精英家教網(wǎng)如圖,△ABC為等腰直角三角形,若AD=
1
3
AC,CE=
1
3
BC,則∠1和∠2的大小關(guān)系是(  )
A、∠1>∠2B、∠1<∠2
C、∠1=∠2D、無法確定
分析:先過E作EF⊥AB于F,設(shè)CA=CB=3,利用勾股定理求出EF=BF=
2
,再證明Rt△DCE與Rt△AFE相似即可得出答案.
解答:精英家教網(wǎng)解:過E作EF⊥AB于F,設(shè)CA=CB=3,AB=3
2

AD=
1
3
AC=1,CD=2
CE=
1
3
BC=1,EB=2
EF=BF=
2

AF=AB-BF=3
2
-
2
=2
2
,
所以
CD
AF
=
CE
EF
,
所以,Rt△DCE與Rt△AFE相似.
所以,∠1=∠2.
故選C.
點評:此題考查學(xué)生對等腰直角三角形,勾股定理和相似三角形的判定與性質(zhì)的理解和掌握,此題的關(guān)鍵是過E作EF⊥AB,這是此題的突破點,然后利用相似三角形即可證明,此題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,△ABC為等腰三角形,AB=AC,∠A=40°,D,E,F(xiàn)分別在BC,AC,AB上,且CE=CD,BD=BF,則∠EDF的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等腰直角三角形,它的面積為8平方厘米,以它的斜邊為邊的正方形BCDE的面積為( 。┢椒嚼迕祝
A、16B、24C、64D、32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等腰直角三角形∠BAC=90°,AD是斜邊BC上的中線,△ABD旋轉(zhuǎn)到△ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點?旋轉(zhuǎn)角度是多少度?
(2)四邊形ADCE是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•六合區(qū)一模)如圖,△ABC為等腰直角三角形,∠C=90°,若在某一平面直角坐標(biāo)系中,頂點C的坐標(biāo)為(1,1),B的坐標(biāo)為(2,0).則頂點A的坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等腰三角形,如果把它沿底邊BC翻折后,得到△DBC,那么四邊形ABDC為( 。

查看答案和解析>>

同步練習(xí)冊答案