【題目】如圖,拋物線y=﹣2x2+4x與x軸的另一個(gè)交點(diǎn)為A,現(xiàn)將拋物線向右平移m(m2)個(gè)單位長度,所得拋物線與x軸交于C,D,與原拋物線交于點(diǎn)P,設(shè)PCD的面積為S,則用m表示S正確的是( 。

A. (m2﹣4) B. m2﹣2 C. (4﹣m2 D. 2﹣m2

【答案】B

【解析】

先求出A的坐標(biāo),設(shè)P關(guān)于x=1的對(duì)稱點(diǎn)為Q,且設(shè)P的橫坐標(biāo)為x1Q的橫坐標(biāo)為x2,根據(jù)題意可知x1+x2=2x1x2=m,從而求出x1x2的表達(dá)式

y=﹣2x2+4x=y=﹣2(x-1)2+2,拋物線的對(duì)稱軸為x=1,y=0代入y=﹣2x2+4x0=﹣2x2+4x,x=0x=2A2,0),OA=2,設(shè)P關(guān)于x=1的對(duì)稱點(diǎn)為Q且設(shè)P的橫坐標(biāo)為x1Q的橫坐標(biāo)為x2,

∵拋物線向右平移mm2個(gè)單位長度,PQ=mx1x2=m,,解得x1=,x2=

x1=代入y=﹣2x2+4x,y=20,∴在△PCD,CD邊上的高為2

OA=CD=2,SPCD=×2×)=2

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y-x+b的圖象與x軸,y軸分別交于點(diǎn)AB,與一次函數(shù)yx的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,在x軸上有一點(diǎn)Pa,0),過點(diǎn)Px軸的垂線,分別交一次函數(shù)y-x+b和一次函數(shù)yx的圖象于點(diǎn)C,D

1)點(diǎn)M的縱坐標(biāo)是   ;b的值是   

2)求線段AB的長;

3)當(dāng)CDAB時(shí),請(qǐng)直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小龍?jiān)谌kS機(jī)抽取了一部分同學(xué)就“我最喜愛的體育項(xiàng)目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項(xiàng)).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)求“其他”部分對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°,AC=12.點(diǎn)D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點(diǎn)分別為F,G.

(1)如圖,點(diǎn)D在線段CB上,四邊形ACDE是正方形.

①若點(diǎn)GDE中點(diǎn),求FG的長.

②若DG=GF,求BC的長.

(2)已知BC=9,是否存在點(diǎn)D,使得DFG是等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊邊靠墻(墻長18m)的空地,修建一個(gè)矩形綠地ABCD,綠地一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D),設(shè)AB邊為xm,綠地面積為ym2

(1)求yx之間的函數(shù)關(guān)系,并求出自變量x的取值范圍;

(2)綠地的面積能不能為200m2?如果能,求出x的值,如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)市委政府提出的精準(zhǔn)扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

車型

目的地

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出yx的函數(shù)解析式.

(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知函數(shù)yx+2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱.

1)求直線BC的函數(shù)解析式;

2)設(shè)點(diǎn)Mx軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)My軸平行線,交直線AB于點(diǎn)P,交直線BC于點(diǎn)Q

①若PQB的面積為,求點(diǎn)M的坐標(biāo):

②在①的條件下,在直線PQ上找一點(diǎn)R,使得MOR≌△MOQ,直接寫出點(diǎn)R的坐標(biāo);

3)連接BM,如圖2.若∠BMP=∠BAC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)垃圾分類,推動(dòng)綠色發(fā)展,某工廠購進(jìn)甲、乙兩種型號(hào)的機(jī)器人用來進(jìn)行垃圾分類,甲型機(jī)器人比乙型機(jī)器人每小時(shí)多分20kg,甲型機(jī)器人分類800kg垃圾所用的時(shí)間與乙型機(jī)器人分類600kg垃圾所用的時(shí)間相等。

1)兩種機(jī)器人每小時(shí)分別分類多少垃圾?

2)現(xiàn)在兩種機(jī)器人共同分類700kg垃圾,工作2小時(shí)后甲型機(jī)器人因機(jī)器維修退出,求甲型機(jī)器人退出后乙型機(jī)器人還需工作多長時(shí)間才能完成?

查看答案和解析>>

同步練習(xí)冊(cè)答案