【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC、DC(或它們的延長線)于點(diǎn)M,N.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到(如圖1)時(shí),求證:BM+DN=MN;
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置時(shí),猜想線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系呢?請直接寫出你的猜想。(不需要證明)
【答案】(1)見解析;(2)DN-BM=MN
【解析】
(1)根據(jù)題意延長CB至E使得BE=DN,連接AE,利用全等三角形判定證明△ABE≌△AND和△EAM≌△NAM,等量代換即可求證BM+DN=MN;
(2)由題意在DN上截取DE=MB,連接AE,證△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根據(jù)SAS證△AMN≌△AEN,推出MN=EN即可.
解:(1)證明:如圖1,延長CB至E使得BE=DN,連接AE,
∵四邊形ABCD是正方形,
∴AB=AD,∠D=∠ABC=90°=∠ABE,
在△ADN和△ABE中
∵AD=AB∠D=∠ABEDN=BE,
△ABE≌△ADN(SAS),
∴∠BAE=∠DAN,AE=AN,
∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,
∵∠MAN=45°,
∴∠EAM=∠MAN,
∵在△EAM和△NAM中
AE=AN∠EAM=∠NAMAM=AM,
∴△EAM≌△NAM,
∴MN=ME,
∵M(jìn)E=BM+BE=BM+DN,
∴BM+DN=MN;
(2)猜想:線段BM,DN和MN之間的等量關(guān)系為:DN-BM=MN.
證明:如圖2,在DN上截取DE=MB,連接AE,
∵AD=AB,∠D=∠ABM=90°,BM=DE,
∴△ABM≌△ADE(SAS).
∴AM=AE;∠MAB=∠EAD,
∵∠MAN=45°=∠MAB+∠BAN,
∴∠DAE+∠BAN=45°,
∴∠EAN=90°-45°=45°=∠MAN,
∵在△AMN和△AEN中,AM=AE,∠MAN=∠EAN,AN=AN,
∴△AMN≌△AEN(SAS),
∴MN=EN,
∵DN-DE=EN,
∴DN-BM=MN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)、分別在軸和軸正半軸上,點(diǎn)的坐標(biāo)是,點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)、點(diǎn)重合),連結(jié)、,過點(diǎn)作射線交的延長線于點(diǎn),交邊于點(diǎn),且,令,.
(1)當(dāng)為何值時(shí),?
(2)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在,使的面積與的面積之和等于的面積.若存在,請求的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明代表學(xué)校參加“我和我的祖國”主題宣傳教育活動(dòng),該活動(dòng)分為兩個(gè)階段,第一階段有“歌曲演唱”、“書法展示”、“器樂獨(dú)奏”3個(gè)項(xiàng)目(依次用、、表示),第二階段有“故事演講”、“詩歌朗誦”2個(gè)項(xiàng)目(依次用、表示),參加人員在每個(gè)階段各隨機(jī)抽取一個(gè)項(xiàng)目完成.
(1)用畫樹狀圖或列表的方法,列出小明參加項(xiàng)目的所有等可能的結(jié)果;
(2)求小明恰好抽中、兩個(gè)項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1的坐標(biāo)為(1,0),A2在y軸的正半軸上,且∠A1A2O=30°,過點(diǎn)A2作A2A3⊥A1A2,垂足為A2,交x軸于點(diǎn)A3,過點(diǎn)A3作A3A4⊥A2A3,垂足為A3,交y軸于點(diǎn)A4;過點(diǎn)A4作A4A5⊥A3A4,垂足為A4,交x軸于點(diǎn)A5;過點(diǎn)A5作A5A6⊥A4A5,垂足為A5,交y軸于點(diǎn)A6;…按此規(guī)律進(jìn)行下去,則點(diǎn)A2017的橫坐標(biāo)為( )
A.B.0C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海南省三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時(shí)刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時(shí)的速度繼續(xù)航行,2小時(shí)后到達(dá)B處,測得該島在北偏東75°方向,求此時(shí)海監(jiān)船與黃巖島P的距離BP的長.(結(jié)果精確到0.1海里,參考數(shù)據(jù):tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙P的圓心為P(﹣3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.
(1)在圖中作出⊙P關(guān)于y軸對稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關(guān)系.
(2)若點(diǎn)N在(1)中的⊙P′上,求PN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬(AB)為4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m.當(dāng)水面下降1m時(shí),求水面的寬度增加了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)和是反比例函數(shù)圖象上的兩個(gè)點(diǎn),當(dāng)<<時(shí),<,則一次函數(shù)的圖象不經(jīng)過的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com