【題目】如圖,已知直角△ABC中,AC=6,BC=8,過直角頂點C作CA1⊥AB,垂足為A1,再過A作A1C1⊥BC,垂足為C1,過C1作C1A2⊥AB,垂足為A2,再過A2作A2C2⊥BC,垂足為C2,……,則=_____(其中n為正整數(shù)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③a﹣b+c>0;④當(dāng)x≠1時,a+b>ax2+bx;⑤4ac<b2.其中正確的有( 。﹤
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).
(1)求拋物線的頂點P的坐標(biāo)(用含a的代數(shù)式表示);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.
①當(dāng)時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);
②當(dāng)“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題提出:如圖(1),在直角△ABC中,∠C=90°,AC=8,BC=6,點D為AC上一點且AD=2,過點D作直線DE交△ABC于點E,使得△ABC被分成面積相等的兩部分,則DE的長為 .
(2)類比發(fā)現(xiàn):如圖(2),五邊形ABOCD,各頂點坐標(biāo)為:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2)請你找出一條經(jīng)過頂點A的直線,將五邊形ABOCD分為面積相等的兩部分,求出該直線對應(yīng)的函數(shù)表達式.
(3)如圖(3),王叔叔家有一塊四邊形菜地ABCD,他打算過D點修一條筆直的小路把四邊形菜地ABCD分成面積相等的兩部分,分別種植不同的農(nóng)作物,已知AB=AD=200米,BC=DC=200米,∠BAD=90°過點D是否存在一條直線將四邊形ABCD的面積平分?若存在,求出平分該四邊形面積的線段長:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑,BA=BC,BD交AC于點E,點F在DB的延長線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)若BC=2,BE=4,求⊙O半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)
(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;
(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.
(3)求點在函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與坐標(biāo)軸交于A,B兩點,矩形ABCD的對稱中心為M,雙曲線(x>0)正好經(jīng)過C,M兩點,則直線AC的解析式為:_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com