【題目】如圖,等腰與等腰,,,,,垂足為,直線交于點.將繞點順時針旋轉(zhuǎn),則的長的最大值是______.
【答案】
【解析】
延長ED到N,使得DN=DE,連接CN,BN,延長BN交AE于M.取BC的中點F,連接AF,OF.利用矩形的性質(zhì)證明OD∥BN,推導(dǎo)出OB=OE,求出OF,AF即可解決問題.
如圖,延長ED到N,使得DN=DE,連接CN,BN,延長BN交AE于M.取BC的中點F,連接AF,OF.
∵CD⊥EN,DN=DE,
∴CN=CE,
∵DC=DE,∠CDE=90°,
∴∠DCE=∠DCN=45°,
∴∠ACB=∠NCE=90°,
∴∠BCN=∠ACE,
在△BCN和△ACE中,
,
∴△BCN≌△ACE(SAS),
∴∠BNC=∠AEC,
∵∠BNC+∠CNM=180°,
∴∠CNM+∠AEC=180°,
∴∠ECN+∠NME=180°,
∵∠ECN=90°,
∴∠NME=90°,
∵DH⊥AE,
∴∠NME=∠DHE=90°,
∴OD∥BN,
∵DN=DE,
∴OB=OE,
∵BF=CF,
∴OF=EC,
∵CD=DE=6,∠CDE=90°,
∴EC=6,
∴OF=3,
在Rt△ACF中,∵AC=12,CF=6,
∴,
∵OA≤AF+OF,
∴OA≤6+3,
∴OA的最大值為6+3.
故答案為6+3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是以BC為直徑的半圓的中點,連接AB,點D是直徑BC上一點,連接AD,分別過點B、點C向AD作垂線,垂足為E和F,其中,EF=2,CF=6,BE=8,則AB的長是( )
A.4B.6C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿及升旗臺的剖面和教學(xué)樓的剖面在同一平面上,旗桿與地面垂直,在教學(xué)樓底部E點處測得旗桿頂端的仰角∠AED=58°,升旗臺底部到教學(xué)樓底部的距離DE=7米,升旗臺坡面CD的坡度i=1:0.75,坡長CD=2米,若旗桿底部到坡面CD的水平距離BC=1米,求旗桿AB的高度約為多少?(保留一位小數(shù),參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的兩直角邊,分別在軸的負(fù)半軸和軸的正半軸上,為坐標(biāo)原點,,兩點的坐標(biāo)分別為、,拋物線經(jīng)過點,且頂點在直線上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若是由沿軸向右平移得到的,當(dāng)四邊形是菱形時,試判斷點和點是否在該拋物線上,并說明理由;
(3)在(2)的條件下,若點是所在直線下方拋物線上的一個動點,過點作平行于軸交于.設(shè)點的橫坐標(biāo)為,的長度為.求與之間的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求取最大值時,點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在中,,點在上,以為半徑的⊙交于,的垂直平分線交于,交于,連接.
(1)求證:是⊙的切線;
(2)若,,且,求⊙的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線交軸于,兩點(點在點的左邊),交軸正半軸于點.
(1)如圖1,當(dāng)時.
①直接寫出點,,的坐標(biāo);
②若拋物線上有一點,使,求點的坐標(biāo).
(2)如圖2,平移直線交拋物線于,兩點,直線與直線交于點,若點在定直線上運動,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 C 為 Rt△ACB 與 Rt△DCE 的公共點,∠ACB=∠DCE=90°,連 接 AD、BE,過點 C 作 CF⊥AD 于點 F,延長 FC 交 BE 于點 G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一組同心圓的圓心為坐標(biāo)原點,它們的半徑分別為.按照“加"依次遞增; 一組平行線, ..分別過,且與過該點的圓相切.若半徑為的圓與在第一象限內(nèi)交于點,半徑為的圓與在第象限內(nèi)相交于點,半徑為的圓與在第一象限內(nèi)相交于點按照此規(guī)律,則點的坐標(biāo)是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com