【題目】如圖,在中,,,BEAC上的高,CFAB上的高,HBECF的交點,求、的度數(shù).

【答案】120°

【解析】

試題在△ABC中,∠ABC=66°,∠ACB=54°,根據(jù)三角形的內角和定理可得∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又因BEAC邊上的高,所以∠AEB=90°,即可得∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理即可得∠ACF=30°,利用三角形外角的性質可得∠BHC=∠BEC+∠ACF=90°+30°=120°

試題解析:解:∵∠ABC=66°∠ACB=54°,

∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°

∵BEAC邊上的高,所以∠AEB=90°,

∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°

同理,∠ACF=30°,

∴∠BHC=∠BEC+∠ACF=90°+30°=120°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=2,∠B=30°,P是BC邊上一個動點,過點P作PD⊥BC,交△ABC的AB邊于點D.若設PD為x,△BPD的面積為y,則y與x之間的函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,DAC的中點,CEBD于點E,交BA的延長線于點F.若BF=12,則△FBC的面積為( )

A. 40 B. 46 C. 48 D. 50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料后解決問題:

小明遇到下面一個問題:

計算(2+1)(22+1)(24+1)(28+1).

經過觀察,小明發(fā)現(xiàn)如果將原式進行適當?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結構,進而可以應用平方差公式解決問題,具體解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

請你根據(jù)小明解決問題的方法,試著解決以下的問題:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化簡:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學錯將“2A﹣B“看成”2A+B“,算得結果為4a2b3ab2+4abc

(1)計算B的表達式;

(2)求出2AB的結果;

(3)小強同學說(2)中的結果的大小與c的取值無關,對嗎?若a=,b=,

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+1(a<0)的圖象過點(1,0)和(x1 , 0),且﹣2<x1<﹣1,下列5個判斷中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣ ;⑤2a<b+ ,正確的是(
A.①③
B.①②③
C.①②③⑤
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租車從停車場出發(fā),沿著東西向的大街行駛,到晚上6時,一天的行駛記錄如下:(向東行駛記為正,向西行駛記為負,單位:千米)-4、+7、-9、+8、+6、-4、-3、+12

1)到晚上6時,出租車在什么位置?

2)若汽車每千米耗油0.2升,則從停車場出發(fā)到晚上6時,出租車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD,BE//DF,且分別交對角線AC于點E,F(xiàn),連接ED,BF .

求證:(1)ΔABEΔCDF;

(2)DEF=BFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上 A、B 兩點所對應的數(shù)分別是 a b,且(a+5)2+|b﹣7|=0.

(1)求 a,b;A、B 兩點之間的距離.

(2)有一動點 P 從點 A 出發(fā)第一次向左運動 1 個單位長度,然后在新的位置第二次運動,向右運動 2個單位長度,在此位置第三次運動,向左運動 3個單位長度…按照如此規(guī)律不斷地左右運動,當運動到 2019次時,求點P所對應的數(shù).

(3)(2)的條件下,點 P在某次運動時恰好到達某一個位置,使點 P到點B的距離是點 P 到點 A 的距離的3倍?請直接寫出此時點 P所對應的數(shù),并分別寫出是第幾次運動.

查看答案和解析>>

同步練習冊答案