【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.
(1)寫(xiě)出數(shù)軸上點(diǎn)A、C表示的數(shù);
(2)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),M為線段AP的中點(diǎn),點(diǎn)N在線段CQ上,且CN=CQ.設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0)秒.
①數(shù)軸上點(diǎn)M、N表示的數(shù)分別是 (用含t的式子表示);
②t為何值時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等?
【答案】(1)-9;15;(2)①t-9、15-4t.②t=2或t=
【解析】
(1)根據(jù)圖示和已知條件易求點(diǎn)A、C表示的數(shù)分別是-9,15;
(2)①根據(jù)題意,直接寫(xiě)出點(diǎn)M、N表示的數(shù)分別是t-9,15-4t;
②分類討論:點(diǎn)M在原點(diǎn)左側(cè),點(diǎn)N在原點(diǎn)右側(cè);點(diǎn)M、N都在原點(diǎn)左側(cè).
(1)點(diǎn)A、C表示的數(shù)分別是-9、15.
(2)①點(diǎn)M、N表示的數(shù)分別是t-9、15-4t.
②當(dāng)點(diǎn)M在原點(diǎn)左側(cè),點(diǎn)N在原點(diǎn)右側(cè)時(shí),由題意可知9-t=15-4t.
解這個(gè)方程,得t=2.
當(dāng)點(diǎn)M、N都在原點(diǎn)左側(cè)時(shí),由題意可知t-9=15-4t.
解這個(gè)方程,得t=.
根據(jù)題意可知,點(diǎn)M、N不能同時(shí)在原點(diǎn)右側(cè).
所以當(dāng)t=2或t=時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們根據(jù)指數(shù)運(yùn)算,得出了一種新的運(yùn)算,如表是兩種運(yùn)算對(duì)應(yīng)關(guān)系的一組實(shí)例:
指數(shù)運(yùn)算 | 21=2 | 22=4 | 23=8 | … | 31=3 | 32=9 | 33=27 | … |
新運(yùn)算 | log22=1 | log24=2 | log28=3 | … | log33=1 | log39=2 | log327=3 | … |
根據(jù)上表規(guī)律,某同學(xué)寫(xiě)出了三個(gè)式子:①log216=4,②log525=5,③log2 =﹣1.其中正確的是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx﹣3經(jīng)過(guò)(﹣1,0),(3,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=kx與拋物線交于A,B兩點(diǎn).
(1)寫(xiě)出點(diǎn)C的坐標(biāo)并求出此拋物線的解析式;
(2)當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),求k的值及A,B兩點(diǎn)的坐標(biāo);
(3)是否存在實(shí)數(shù)k使得△ABC的面積為 ?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知射線 OC 在∠AOB 的內(nèi)部,射線 OE 平分∠AOC,射線 OF 平分∠COB.
(1)如圖 1,若∠AOB=100°,∠AOC=32°,則∠EOF= 度;
(2)若∠AOB=α,∠AOC=β.
①如圖 2,若射線 OC 在∠AOB 的內(nèi)部繞點(diǎn) O 旋轉(zhuǎn),求∠EOF 的度數(shù);
②若射線 OC 在∠AOB 的外部繞點(diǎn) O 旋轉(zhuǎn)(旋轉(zhuǎn)中∠AOC、∠BOC 均是指小于 180°的角),其余條件不變,請(qǐng)借助圖 3 探究∠EOF 的大小,直接寫(xiě)出∠EOF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,能否在AB上確定一點(diǎn)E,使△BDE的周長(zhǎng)等于AB的長(zhǎng)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點(diǎn).
(1)求證:∠B=∠ACD.
(2)已知點(diǎn)E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長(zhǎng);
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關(guān)系,并請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與坐標(biāo)軸分別交于A(﹣2,0),B(0,1)兩點(diǎn),與反比例函數(shù)的圖象在第一象限交于點(diǎn)C(4,n),求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一批肥料,為了驗(yàn)證這批肥料的重量,抽出 10 袋進(jìn)行稱重,每袋以 50 千克為標(biāo)準(zhǔn),超出部分記為正,不足部分記為負(fù),10 袋的重量分別如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5
(1)按每袋 50 千克為標(biāo)準(zhǔn),抽出的 10 袋肥料的重量超出或不足多少千克?
(2)若購(gòu)進(jìn)這批肥料共有 500 袋,問(wèn)這批肥料的總重量約為多少?
(3)若按每袋 120 元購(gòu)進(jìn),140 元賣(mài)出,則賣(mài)完這批肥料的總利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com