【題目】關于x的方程m(x+h)2+k=0(m,h,k均為常數(shù),m≠0)的解是x1=﹣3,x2=2,則方程m(x+h﹣3)2+k=0的解是( )
A.x1=﹣6,x2=﹣1
B.x1=0,x2=5
C.x1=﹣3,x2=5
D.x1=﹣6,x2=2

【答案】B
【解析】解:解方程m(x+h)2+k=0(m,h,k均為常數(shù),m≠0)得x=﹣h±
而關于x的方程m(x+h)2+k=0(m,h,k均為常數(shù),m≠0)的解是x1=﹣3,x2=2,
所以﹣h﹣ =﹣3,﹣h+ =2,
方程m(x+h﹣3)2+k=0的解為x=3﹣h± ,
所以x1=3﹣3=0,x2=3+2=5.
故選:B.
利用直接開平方法得方程m(x+h)2+k=0的解x=﹣h± ,則﹣h﹣ =﹣3,﹣h+ =2,再解方程m(x+h﹣3)2+k=0得x=3﹣h± ,所以x1=0,x2=5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】近年來,霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關注,某學校計劃在教室內(nèi)安裝空氣凈化裝置,需購進A、B兩種設備,已知:購買1臺A種設備和2臺B種設備需要3.5萬元;購買2臺A種設備和1臺B種設備需要2.5萬元.

(1)求每臺A種、B種設備各多少萬元?

(2)根據(jù)學校實際,需購進A種和B種設備共30臺,總費用不超過30萬元,請你通過計算,求至少購買A種設備多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應的扇形的圓心角是度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結果估計該校喜歡健美操的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)與一次函數(shù)

圖像交于點A

(1)求點A的坐標;

(2)在y軸上確定點M,使得△AOM是等腰三角形,請直接寫出點M的坐標;

(3)如圖,設x軸上一點Pa0),過點Px軸的垂線(垂線位于點A的右側),分別交的圖像于點BC,連接OC,若BC=OA,求△ABC的面積及點B、點C的坐標;

(4)在(3)的條件下,設直線x軸于點D,在直線BC上確定點E,使得△ADE的周長最小,請直接寫出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點O為圓心所作的半圓分別與AC、BC相切于點D、E,則AD為(
A.2.5
B.1.6
C.1.5
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CBOA,∠B=∠A=100°,EFCB上,且滿足∠FOC=∠AOCOE平分∠BOF

(1)求∠EOC的度數(shù);

(2)若平行移動AC,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;

(3)在平行移動AC的過程中,是否存在某種情況,使∠OEB=∠OCA?若存在,求出∠OCA度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術、正負術和方程術.其中,方程術是《九章算術》最高的數(shù)學成就.《九章算術》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)幾何?”

譯文:“有幾個人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個人共同出錢買雞?設有x個人共同買雞,根據(jù)題意列一元一次方程._____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形,,過點,垂足為,并延長,使,聯(lián)結.

(1)求證:四邊形是平行四邊形。

(2)聯(lián)結,如果

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,C=90°,AC=BC,過點C在ABC外作直線MN,AMMN于M,BNMN于N。

(1)求證:MN=AM+BN;

(2)若過點C在ABC內(nèi)作直線MN,AMMN于M,BNMN于N,則AM、BN與MN之間有什么關系?請說明理由。

查看答案和解析>>

同步練習冊答案