【題目】在菱形ABCD中,∠ADC=60°,BD是一條對(duì)角線,點(diǎn)P在邊CD上(與點(diǎn)C,D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,在BD上取一點(diǎn)H,使HQ=HD,連接HQ,AH,PH.
(1)依題意補(bǔ)全圖1;
(2)判斷AH與PH的數(shù)量關(guān)系及∠AHP的度數(shù),并加以證明;
(3)若∠AHQ=141°,菱形ABCD的邊長(zhǎng)為1,請(qǐng)寫(xiě)出求DP長(zhǎng)的思路.(可以不寫(xiě)出計(jì)算結(jié)果)
【答案】(1)見(jiàn)解析;(2)AH=PH,∠AHP=120°,理由見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)根據(jù)題意可補(bǔ)全圖形;
(2)由平移的性質(zhì)可得PQ=CD,由菱形的性質(zhì)可得AD=DC,∠ADB=∠BDQ=30,可得AD=PQ,∠HQD=∠HDQ=30,可證△ADH≌△PQH,可得AH=PH,∠AHD=∠PHE,即可求出∠AHP=120,
(3)根據(jù)三角形的內(nèi)角和定理和等腰三角形的性質(zhì)可求∠DAP=21,通過(guò)解△DAP,可求DP的長(zhǎng)度.
解:(1)補(bǔ)全圖形,如圖所示
(2)AH=PH,∠AHP=120°.
理由如下:如圖,由平移可知,PQ=DC.
∵四邊形ABCD是菱形,∠ADC=60°,
∴AD=DC,∠ADB=∠BDQ=30°,
∴AD=PQ,
∵HQ=HD,
∴∠HQD=∠HDQ=30°,
∴∠ADB=∠DQH,∠DHQ=120°.
∵HQ=DH,∠ADB=∠DQH,AD=PQ,
∴△ADH≌△PQH(SAS),
∴AH=PH,∠AHD=∠PHQ,
∴∠AHD+∠DHP=∠PHQ+∠DHP,
∴∠AHP=∠DHQ,
∵∠DHQ=120°,
∴∠AHP=120°.
(3)求解思路如下:
由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°,
a.在△ABH中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°,
b.在△AHP中,由∠AHP=120°,AH=PH,解得∠PAH=30°,
c.在△ADB中,由∠ADB=∠ABD=30°,解得∠BAD=120°,
由a、b、c可得∠DAP=21°,
在△DAP中,由∠ADP=60°,∠DAP=21°,AD=1,可解△DAP,
從而求得DP長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長(zhǎng)線上一點(diǎn),且PC=PE.
(1)求AC、AD的長(zhǎng);
(2)試判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為加快城鄉(xiāng)對(duì)接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對(duì)A,B兩地間的公路進(jìn)行改建.如圖,A,B兩地之間有一座山,汽車原來(lái)從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開(kāi)通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°,開(kāi)通隧道后,汽車從A地到B地大約可以少走多少千米(結(jié)果精確到1千米)?(參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“在三角形一邊上求作一個(gè)點(diǎn),使這點(diǎn)和三角形的兩個(gè)頂點(diǎn)構(gòu)成的三角形與原三角形相似”的尺規(guī)作圖過(guò)程.
已知:△ABC.
求作:在BC邊上求作一點(diǎn)P,使得△PAC∽△ABC.
作法:如圖,
①作線段AC的垂直平分線GH;
②作線段AB的垂直平分線EF,交GH于點(diǎn)O;
③以點(diǎn)O為圓心,以OA為半徑作圓;
④以點(diǎn)C為圓心,CA為半徑畫(huà)弧,交⊙O于點(diǎn)D(與點(diǎn)A不重合);
⑤連接線段AD交BC于點(diǎn)P.
所以點(diǎn)P就是所求作的點(diǎn).
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字:,1,2,的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽出一張記下數(shù)字,放回洗勻后再?gòu)闹须S機(jī)抽出一張記下數(shù)字.
(1)請(qǐng)用列表或畫(huà)樹(shù)形圖的方法只選其中一種,表示兩次抽出卡片上的數(shù)字的所有結(jié)果;
(2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)落在雙曲線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】潮州旅游文化節(jié)開(kāi)幕前,某鳳凰茶葉公司預(yù)測(cè)今年鳳凰茶葉能夠暢銷,就用32000元購(gòu)進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購(gòu)進(jìn)第二批鳳凰茶葉,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價(jià)多了10元.
(1)該鳳凰茶葉公司兩次共購(gòu)進(jìn)這種鳳凰茶葉多少千克?
(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,P是BC邊上一動(dòng)點(diǎn)(不與B,C重合),DE⊥AP于E.
(1)試說(shuō)明△ADE∽△PAB;
(2)若PA=x,DE=y,請(qǐng)寫(xiě)出y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,
(1)求DE的長(zhǎng);
(2)過(guò)點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長(zhǎng);
(3)過(guò)點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com