【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為

【答案】2或3
【解析】解:當BD=PC時,△BPD與△CQP全等,
∵點D為AB的中點,
∴BD= AB=6cm,
∵BD=PC,
∴BP=8﹣6=2(cm),
∵點P在線段BC上以2厘米/秒的速度由B點向C點運動,
∴運動時間時1s,
∵△DBP≌△PCQ,
∴BP=CQ=2cm,
∴v=2÷1=2;
當BD=CQ時,△BDP≌△QCP,
∵BD=6cm,PB=PC,
∴QC=6cm,
∵BC=8cm,
∴BP=4cm,
∴運動時間為4÷2=2(s),
∴v=6÷2=3(m/s),
故答案為:2或3.

此題要分兩種情況:①當BD=PC時,△BPD與△CQP全等,計算出BP的長,進而可得運動時間,然后再求v;②當BD=CQ時,△BDP≌△QCP,計算出BP的長,進而可得運動時間,然后再求v.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:小明熱愛數(shù)學,在課外書上看到了一個有趣的定理——“中線長定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點DBC的中點,根據“中線長定理”,可得:

AB2AC2=2AD2+2BD2

小明嘗試對它進行證明,部分過程如下:

解:過點AAEBC于點E,如圖2,在Rt△ABE中,AB2AE2BE2

同理可得:AC2AE2CE2,AD2AE2DE2,

為證明的方便,不妨設BDCDx,DEy,

AB2AC2AE2BE2AE2CE2=……

(1)請你完成小明剩余的證明過程;

理解運用:

(2) ① 在△ABC中,點DBC的中點,AB=6,AC=4,BC=8,則AD=_______;

② 如圖3,⊙O的半徑為6,點A在圓內,且OA=2,點B和點C在⊙O上,且∠BAC=90°,點EF分別為AO、BC的中點,則EF的長為________;

拓展延伸:

(3)小明解決上述問題后,聯(lián)想到《能力訓練》上的題目:如圖4,已知⊙O的半徑為5,以A(3,4)為直角頂點的△ABC的另兩個頂點B,C都在⊙O上,DBC的中點,求AD長的最大值.請你利用上面的方法和結論,求出AD長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價.

(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價.

(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是   分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在圖中作出△ABC關于x軸的對稱圖形△A1B1C1
(2)寫出點A1 , B1 , C1的坐標(直接寫答案)
A1
B1
C1
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面哪個式子的計算結果是9x2(   )

A. (3x)(3+x) B. (x3)(x+3) C. (3x)2 D. (3+x)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm /s,連接PQ,設運動的時間為t(單位:s)(0≤t≤4).解答下列問題:

(1)當t為何值時,PQ∥BC.

(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.

(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案