【題目】如圖,已知AB=AC,AD=AE,BE與CD相交于O.圖中全等的三角形有( 。⿲Γ
A. 1 B. 2 C. 3 D. 4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)到原點(diǎn)的距離相等.
(1)用“>”“=”“<”填空:b 0,a+b 0,a﹣c 0,b﹣c 0,a+c 0;
(2)化簡|a+b|+|a﹣c|﹣|b|+|a|+|c|+|a+c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了拉動內(nèi)需,全國各地汽車購置稅補(bǔ)貼活動在2009年正式開始,某經(jīng)銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%和25%.
(1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?
(2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據(jù)汽車補(bǔ)貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補(bǔ)貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補(bǔ)貼了多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校校園內(nèi)有一小山坡AB,經(jīng)測量,坡角∠ABC=30°,斜坡AB長為12米.為方便學(xué)生行走,決定開挖小山坡,使斜坡BD的坡比是1:3(即為CD與BC的長度之比).A,D兩點(diǎn)處于同一鉛垂線上,求開挖后小山坡下降的高度AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.
(1)求∠MON的大小.
(2)當(dāng)銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)
(2)(3+)(3﹣)﹣(1﹣)2
(3)我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請從以下一元二次方程中任選一個,并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個方程.
①x2﹣4x﹣1=0 ②x(2x+1)=8x﹣3 ③x2+3x+1=0 ④x2﹣9=4(x﹣3)
我選擇第幾個方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥物研究單位試制成功一種新藥,經(jīng)測試,如果患者按規(guī)定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時間x(小時)之間的關(guān)系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發(fā)揮作用,請根據(jù)題意回答下列問題:
(1)服藥后,大約 分鐘后,藥物發(fā)揮作用.
(2)服藥后,大約 小時,每毫升血液中含藥量最大,最大值是 微克;
(3)服藥后,藥物發(fā)揮作用的時間大約有 小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=CD,分別以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,連接AF,DE.
(1)求證:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com