將兩個不同的質(zhì)數(shù)接起來可以得到一個四位數(shù),比如由17,19可得到一個四位數(shù)1719;由19,17也可得到一個四位數(shù)1917.已知這樣的四位數(shù)能被這兩個兩位質(zhì)數(shù)的平均數(shù)所整除,試寫出所有這樣的四位數(shù).
【答案】
分析:首先設(shè)這兩個質(zhì)數(shù)分別是x,y,則將它們接起來得到的一個四位數(shù)是100x+y,然后根據(jù)這個四位數(shù)能被這兩個兩位質(zhì)數(shù)的平均數(shù)所整除,可以設(shè)100x+y=m•
(m為整數(shù)),即198x=(m-2)(x+y),得到x,y的范圍,從而求得x,y的值,進而求解.
解答:解:設(shè)這兩個質(zhì)數(shù)分別是x,y,
由題意,可知100x+y=m•
(m為整數(shù)),即200x+2y=m(x+y),
∴198x=(m-2)(x+y).
∵m為整數(shù),
∴198x能被(x+y)整除,
∵(x,y)=1,
∴(x,x+y)=1.
∴198能被(x+y)整除,
而198=2×3
2×11,即198=2×99=3×66=6×33=9×22=11×18,
又∵11≤x≤99,11≤y≤99,x≠y,
∴24≤x+y≤196,
∴x+y=66=13+53=19+47=23+43=29+37.
∴符合條件的四位數(shù)有8個,
它們是1353,5313,1947,4719,2343,4323,2937,3729.
點評:本題主要考查了整數(shù)的整除性問題,得到198能被(x+y)整除,進而得到x,y的取值范圍是解題的關(guān)鍵.