年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△內(nèi)接于⊙,點(diǎn)在的延長(zhǎng)線上,sinB=,∠CAD=30°⑴求證:是⊙的切線;⑵若,求的長(zhǎng)。
【解析】(1)連接OA,由于sinB=,那么可求∠B=30°,利用圓周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等邊三角形,從而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切線;
(2)由于OC⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函數(shù)值可求AE,在Rt△ADE中利用30°的銳角所對(duì)的直角邊等于斜邊的一半,可求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【答案】14。
【考點(diǎn)】軸對(duì)稱-最短路線問題;勾股定理;垂徑定理.
【專題】探究型.
【分析】先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長(zhǎng),作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點(diǎn)B′作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E,在Rt△AB′E中利用勾股定理即可求出AB′的值.
【解答】∵M(jìn)N=20,
∴⊙O的半徑=10,
連接OA、OB,
在Rt△OBD中,OB=10,BD=6,
∴OD===8;
同理,在Rt△AOC中,OA=10,AC=8,
∴OC===6,
∴CD=8+6=14,
作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點(diǎn)B′作AC的垂線,交AC的延長(zhǎng)線于點(diǎn)E,
在Rt△AB′E中,
∵AE=AC+CE=8+6=14,B′E=CD=14,
∴AB′===14.
故答案為:14.
【點(diǎn)評(píng)】本題考查的是軸對(duì)稱-最短路線問題、垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省廈門市翔安區(qū)九年級(jí)適應(yīng)性考試數(shù)學(xué)卷(解析版) 題型:填空題
如圖,△內(nèi)接于⊙,點(diǎn)在的延長(zhǎng)線上,sinB=,∠CAD=30°⑴求證:是⊙的切線;⑵若,求的長(zhǎng)。
【解析】(1)連接OA,由于sinB=,那么可求∠B=30°,利用圓周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等邊三角形,從而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切線;
(2)由于OC⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函數(shù)值可求AE,在Rt△ADE中利用30°的銳角所對(duì)的直角邊等于斜邊的一半,可求AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com