【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關(guān)注,消費者在網(wǎng)店購買某種商品后,對其有
“好評”、“中評”、“差評”三種評價,假設(shè)這三種評價是等可能的.
(1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.
利用圖中所提供的信息解決以下問題:
①小明一共統(tǒng)計了 個評價;
②請將圖1補充完整;
③圖2中“差評”所占的百分比是 ;
(2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.
【答案】(1)①150;②作圖見解析;③13.3%;(2).
【解析】
(1)①用“中評”、“差評”的人數(shù)除以二者的百分比之和即可得總?cè)藬?shù);②用總?cè)藬?shù)減去“中評”、“差評”的人數(shù)可得“好評”的人數(shù),補全條形圖即可;③根據(jù)“差評”的人數(shù)÷總?cè)藬?shù)×100%即可得“差評”所占的百分比;
(2)可通過列表表示出甲、乙對商品評價的所有可能結(jié)果數(shù),根據(jù)概率公式即可計算出兩人中至少有一個給“好評”的概率.
①小明統(tǒng)計的評價一共有:(40+20)÷(1-60%=150(個);
②“好評”一共有150×60%=90(個),補全條形圖如圖1:
③圖2中“差評”所占的百分比是:×100%=13.3%;
(2)列表如下:
好 | 中 | 差 | |
好 | 好,好 | 好,中 | 好,差 |
中 | 中,好 | 中,中 | 中,差 |
差 | 差,好 | 差,中 | 差,差 |
由表可知,一共有9種等可能結(jié)果,其中至少有一個給“好評”的有5種,
∴兩人中至少有一個給“好評”的概率是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=α,點D、E分別在邊AB、AC上,AD=AE,連接DC,點F、P、G分別為DE、DC、BC的中點.
(1)觀察猜想:圖1中,線段PF與PG的數(shù)量關(guān)系是 ,∠FPG= (用含α的代數(shù)式表示)
(2)探究證明:當(dāng)△ADE繞點A旋轉(zhuǎn)到如圖2所示的位置時,小新猜想(1)中的結(jié)論仍然成立,請你證明小新的猜想.
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=2,AB=6,請直接寫出PF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(-1,0),B(3,0),交y軸的正半軸于點C,對稱軸交拋物線于點D,交x軸與點E,則下列結(jié)論:①2a+b=0;②b+2c>0;③a+b>am+bm(m為任意實數(shù));④一元二次方程有兩個不相等的實數(shù)根;⑤當(dāng)△BCD為直角三角形時,a的值有2個;⑥若點P為對稱軸上的動點,則有最大值,最大值為.其中正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD.若點B的坐標(biāo)為(2, 0),則點C的坐標(biāo)為( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠AOB=130°,∠BOC=α.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)判斷△COD的形狀,并加以說明理由.
(2)若AD=1,OC=,OA=時,求α的度數(shù).
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小杰到學(xué)校食堂買飯,看到A、B兩窗口前面排隊的人一樣多(設(shè)為a人,a>8),就站在A窗口隊伍的后面,過了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買了飯離開隊伍,B窗口每分鐘有6人買了飯離開隊伍,且B窗口隊伍后面每分鐘增加5人.
(1)此時,若小杰繼續(xù)在A窗口排隊,則他到達窗口所花的時間是多少?(用含a的代數(shù)式表示)
(2)此時,若小杰迅速從A窗口隊伍轉(zhuǎn)移到B窗口后面重新排隊,且到達B窗口所花的時間比繼續(xù)在A窗口排隊到達A窗口所花的時間少,求a的取值范圍.(不考慮其它因素)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步小路的寬度不計觀測得點B在點A的南偏東方向上,點C在點A的南偏東的方向上,點B在點C的北偏西方向上,AC間距離為400米問小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?
參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過變換可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交于點A,且其對稱軸分別交拋物線C、C1于點B1、D1.此時四邊形OB1A1D1恰為正方形:按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交于點A2,且其對稱軸分別交拋物線C1、C2于點B2、D2.此時四邊形OB2A2D2也恰為正方形:按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3,請?zhí)骄恳韵聠栴}:
(1)填空:a1= ,b1= ;
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線n:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1)
①請用含n的代數(shù)式直接表示出n的解析式;
②當(dāng)x取任意不為0的實數(shù)時,試比較y2018與y2019的函數(shù)值的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com