【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點D是AB的中點;

(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(3)若⊙O的直徑為18,cosB=,求DE的長.

【答案】(1ADBD, 即點DAB的中點(2DEDO,ODO的半徑得DEO的切線

34

【解析】(1)證明:連接AD

∵AB為半圓O的直徑,

∴AD⊥BC

∵AB=AC

DBC的中點

(2)解:相切

連接OD

∵BD=CDOA=OB,

∴OD∥AC

∵DE⊥AC

∴DE⊥OD

∴DE⊙O相切

3∵AB為半圓O的直徑

∴∠ADB=900

Rt△ADB

∵cosB=

∴BD=3

∵CD=3

Rt△ADB

∴cosC=

∴CE=1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算 a2a3 的結(jié)果是(

A.2a5B.a6C.a5D.a4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

1)如圖1,在RtABC中,ABC=90°,以點B為中心,把ABC逆時針旋轉(zhuǎn)90°,得到A1BC1;再以點C為中心,把ABC順時針旋轉(zhuǎn)90°,得到A2B1C,連接C1B1,則C1B1BC的位置關(guān)系為_______;

2)如圖2,當ABC是銳角三角形,ABC=αα≠60°)時,將ABC按照(1)中的方式旋轉(zhuǎn)α,連接C1B1,探究C1B1BC的位置關(guān)系,寫出你的探究結(jié)論,并加以證明;

3)如圖3,在圖2的基礎(chǔ)上,連接B1B,若C1B1=BC,C1BB1的面積為4,則B1BC的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a2﹣b2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鞋店對上一周某品牌女鞋的銷量統(tǒng)計如下:

尺碼(厘米)

22

22.5

23

23.5

24

24.5

25

銷量()

1

2

5

11

7

3

1

該店決定本周進貨時,多進一些尺碼為23.5厘米的鞋,影響鞋店決策的統(tǒng)計量是:( )

A. 平均數(shù)B. 中位數(shù)C. 方差D. 眾數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,過點A作AG∥DB交CB的延長線于點G.
(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017南寧)下列運算正確的是(
A.﹣3(x﹣4)=﹣3x+12
B.(﹣3x)24x2=﹣12x4
C.3x+2x2=5x3
D.x6÷x2=x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象如圖所示,則k、b的符號( )

A.k<0,b>0
B.k>0,b>0
C.k<0,b<0
D.k>0,b<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某足球特色學校在商場購買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費2000元、1400元購買甲、乙兩種足球,這樣購得甲種足球的數(shù)量是購得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價各是多少元?

查看答案和解析>>

同步練習冊答案