如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,將△DEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開(kāi)始和結(jié)束時(shí)重合的情況,設(shè)DE,DF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線) 于G,H點(diǎn),如圖(2)

 

 

 

 

 


(1)問(wèn):始終與△AGC相似的三角形有        

(2)設(shè)CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說(shuō)明理由)

(3)問(wèn):當(dāng)x為何值時(shí),△AGH是等腰三角形.

 

【答案】

解:(1)△HAB ,△HGA。

           (2)∵△AGC∽△HAB,∴,即。

                ∴。

                又∵BC=。

                ∴y關(guān)于x的函數(shù)關(guān)系式為。

           (3)①當(dāng)∠GAH= 45°是等腰三角形.的底角時(shí),如圖1,

                   可知。

                ②當(dāng)∠GAH= 45°是等腰三角形.的頂角時(shí), 如圖2,

                  在△HGA和△AGC中

                  ∵∠AGH=∠CGA,∠GAH=∠C=450,

                  ∴△HGA∽△AGC。

                  ∵AG=AH,∴

                ∴當(dāng)時(shí),△AGH是等腰三角形。

【解析】(1)在△AGC和△HAB中,

            ∵∠AGC=∠B+∠BAG=∠B+900—∠GAC=1350—∠GAC,

              ∠BAH=∠BAC+∠EAF—∠EAC=900+450—∠GAC,

            ∴∠AGC=∠BAH。

            又∵∠ACG=∠HBA=450,∴△AGC∽△HAB。

            在△AGC和△HGA中,

            ∵∠CAG=∠EAF—∠CAF=450—∠CAF,

               ∠H=1800-∠ACH—∠CAH=1800—1350—∠CAF=450—∠CAF,

             ∴∠CAG=∠H。

             又∵∠AGC=∠HGA,∴△AGC∽△HGA。

        (2)利用△AGC∽△HAB得對(duì)應(yīng)邊的比即可得。

        (3)考慮∠GAH是等腰三角形.底角和頂角兩種情況分別求解即可。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點(diǎn),且AE=CD.
(1)求證:AD=BE;
(2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中點(diǎn),BE=AD.
(1)試說(shuō)明:CE⊥BD;
(2)線段AC與ED之間存在什么關(guān)系?為什么?
(3)判斷△BDC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中點(diǎn),則平移的距離是
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,線段AM為BC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊且在CD的下精英家教網(wǎng)方作等邊△CDE,連接BE.
(1)填空:當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)M時(shí),∠ACE=
 
度;
(2)當(dāng)點(diǎn)D在線段AM上(點(diǎn)D不運(yùn)動(dòng)到點(diǎn)A)時(shí),求證:△ADC≌△BEC;
(3)若AB=8,以點(diǎn)C為圓心,以5為半徑作⊙C與直線BE相交于點(diǎn)P、Q兩點(diǎn),在點(diǎn)D運(yùn)動(dòng)的過(guò)程中(點(diǎn)D與點(diǎn)A重合除外),試求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G,陰影部分四邊形OFCG的面積是△ABC的面積的
 

查看答案和解析>>

同步練習(xí)冊(cè)答案