精英家教網 > 初中數學 > 題目詳情
(2011•錦州)如圖,四邊形ABCD,M為BC邊的中點.若∠B=∠AMD=∠C=45°,AB=8,CD=9,則AD的長為( 。
分析:由∠BMD=∠BMA+∠AMD=∠C+∠CDM,∠B=∠AMD=∠C=45°,可證得△ABM∽△MCD,然后由相似等于相似三角形對應邊成比例,即可求得MC與BM的值,然后延長BA與CD交于點E,由勾股定理,即可求得AD的長.
解答:解:∵∠BMD=∠BMA+∠AMD=∠C+∠CDM,
∵∠B=∠AMD=∠C=45°,
∴∠BMA=∠CDM,
∴△ABM∽△MCD,
AB
MC
=
BM
CD

∵M為BC邊的中點,
∴MC=BM,
∵AB=8,CD=9,
∴BM=MC=6
2
,
∴BC=12
2
,
延長BA與CD交于點E,
∵∠B=∠C=45°,
∴∠E=90°,BE=CE,
∴BE=CE=12,
∴AE=BE-AB=4,DE=CE-CD=3,
在Rt△AED中,AD=5.
故選C.
點評:此題考查了相似三角形的判定與性質,勾股定理以及三角形外角的性質.此題難度較大,解題的關鍵是注意數形結合思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•錦州)如圖,AB是⊙O的直徑,BD是⊙O的切線,∠D=32°,則∠A=
29°
29°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖所示,在邊長為1個單位的正方形網格中建立平面直角坐標系,△ABC的頂點均在格點上.
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△A1B1C1向下平移3個單位,畫出平移后的△A2B2C2;
(3)將△A2B2C2繞點C2順時針旋轉90°,畫出旋轉后的△A3B3C2;并直接寫出點A3、B3的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖,在△ABC中,D為AB上一點,⊙O經過B、C、D三點,∠COD=90°,∠ACD=∠BCO+∠BDO.
(1)求證:直線AC是⊙O的切線;
(2)若∠BCO=15°,⊙O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•錦州)如圖,小明站在窗口向外望去,發(fā)現(xiàn)樓下有一棵傾斜的大樹,在窗口C處測得大樹頂部A的俯角為45°,若已知∠ABD=60°,CD=20m,BD=16m,請你幫小明計算一下,如果大樹倒在地面上,其頂端A與樓底端D的距離是多少米?(結果保留整數,參考數據:
2
≈1.414,
3
≈1.732).

查看答案和解析>>

同步練習冊答案