【題目】如圖,在△ABC中,BD,CE分別為AC,AB邊上的中線,BD⊥CE,若BD=4,CE=6,則△ABC的面積為( )

A.12
B.24
C.16
D.32

【答案】C
【解析】解:∵BD,CE分別為AC,AB邊上的中線,
∴點O是△ABC的重心,
∴OC= CE=4,
∴△BDC的面積= ×BD×OC=8,
∵BD為AC邊上的中線,
∴△ABC的面積=2×△BDC的面積=16,
故選:C.

【考點精析】根據(jù)題目的已知條件,利用三角形的“三線”的相關知識可以得到問題的答案,需要掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內部,是三角形內切圓的圓心,稱為內心);2、三角形中線的三條中線線交于一點(交點在三角形內部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2).
(1)求這兩個函數(shù)的表達式;
(2)觀察圖象,直接寫出y1>y2時自變量x的取值范圍.
(3)連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義: 數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點,請在圓上找出滿足條件的點C,使△ABC為“智慧三角形”(畫出點C的位置,保留作圖痕跡);
(2)如圖2,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且CF= CD,試判斷△AEF是否為“智慧三角形”,并說明理由; 運用:

(3)如圖3,在平面直角坐標系xOy中,⊙O的半徑為1,點Q是直線y=3上的一點,若在⊙O上存在一點P,使得△OPQ為“智慧三角形”,當其面積取得最小值時,直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.

(1)求證:直線BF是⊙O的切線.
(2)若CD=2 ,OP=1,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】道外區(qū)勞技學校為了調整重點學科建設和師資配備,對學校開設的四個傳統(tǒng)重點學科開展學生較喜愛的學科調查問卷活動(每名學生必選且只選一項).如圖是在某中學調查的數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,解答下列問題:
(1)求參與本次調查的共有多少名學生?并補全條形統(tǒng)計圖.
(2)在扇形統(tǒng)計圖中,求喜愛“葫蘆烙畫”所對應的扇形的圓心角的度數(shù)?
(3)若道外區(qū)大約有12000名中學生,估計喜歡“陶藝”的共有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AC= ,∠A=30°,BC=1,則AB=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,點P從點A出發(fā),以3cm/s的速度沿AB運動;同時,點Q從點B出發(fā),以20cm/s的速度沿BC運動.當點Q到達點C時,P、Q兩點同時停止運動.設點P、Q運動的時間為t(s).

(1)當t=s時,△BPQ為等腰三角形;
(2)當BD平分PQ時,求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點B的對應點為E,PE、QE分別與AD交于點F、G.
探索:是否存在實數(shù)t,使得AF=EF?如果存在,求出t的值:如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為兩正方形ABCD、BEFG和矩形DGHI的位置圖,其中G、F兩點分別在BC、EH上.若AB=5,BG=3,則△GFH的面積為何?(
A.10
B.11
C.
D.

查看答案和解析>>

同步練習冊答案