【題目】如圖,拋物線y=ax2﹣x+c與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E,點(diǎn)P在BC下方的拋物線上運(yùn)動(dòng).
(1)求該拋物線的解析式;
(2)當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)四邊形ACPB的面積最大時(shí),求點(diǎn)P的坐標(biāo)并求出最大值.
【答案】(1)y=x2﹣x﹣3;(2)P(3,﹣);(3)點(diǎn)P(2,﹣3),最大值為12
【解析】
(1)用交點(diǎn)式設(shè)出拋物線的表達(dá)式,化為一般形式,根據(jù)系數(shù)之間的對(duì)應(yīng)關(guān)系即可求解;
(2)根據(jù)(1)中的表達(dá)式求出點(diǎn)C(0,-3),函數(shù)對(duì)稱軸為:x=1,則點(diǎn)D(2,-3),點(diǎn)E(4,-3),當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),點(diǎn)P在線段DE的中垂線上,據(jù)此即可求解;
(3)求出直線BC的表達(dá)式,設(shè)出P、H點(diǎn)的坐標(biāo),根據(jù)四邊形ACPB的面積=S△ABC+S△BHP+S△CHP進(jìn)行計(jì)算,化為頂點(diǎn)式即可求解.
(1)拋物線的表達(dá)式為:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),
即﹣2a=﹣,解得:a=,
故拋物線的表達(dá)式為:y=x2﹣x﹣3;
(2)當(dāng)x=0時(shí),y=-3,故點(diǎn)C的坐標(biāo)為(0,﹣3),
函數(shù)對(duì)稱軸為:x==1,
∵CE∥AB
∴點(diǎn)D(2,﹣3),點(diǎn)E(4,﹣3),
則DE的中垂線為:x==3,
當(dāng)x=3時(shí),y=x2﹣x﹣3=﹣,
故點(diǎn)P(3,﹣);
(3)設(shè)直線BC的解析式為y=kx+b,
把B(4,0)C(0,﹣3)代入得:
解得:
∴直線BC的表達(dá)式為:y=x﹣3,
故點(diǎn)P作y軸的平行線交BC于點(diǎn)H,
設(shè)點(diǎn)P(x,x2﹣x﹣3),則點(diǎn)H(x,x﹣3);
四邊形ACPB的面積=S△ABC+S△BHP+S△CHP=3×6+HP×OB=9+×4×(x﹣3﹣x2+x+3)=﹣x2+3x+9= ,
∵﹣<0,故四邊形ACPB的面積有最大值為12,此時(shí),點(diǎn)P(2,﹣3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家他60歲時(shí)完成的直指算法統(tǒng)宗是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法對(duì)書中某一問題改編如下:
一百饅頭一百僧,大僧三個(gè)更無爭(zhēng);
小僧三人分一個(gè),大僧共得幾饅頭.
一百饅頭一百僧,大僧三個(gè)更無爭(zhēng);
小僧三人分一個(gè),大僧共得幾饅頭.
意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè)正好分完,大和尚共分得 個(gè)饅頭
A. 25B. 72C. 75D. 90
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,PB切⊙O于點(diǎn)B,且∠APB=60°.
(1)求∠BAC的度數(shù);
(2)若PA=,求點(diǎn)O到弦AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC,AB=6,點(diǎn)E是斜邊AB上的一點(diǎn)(端點(diǎn)A、B除外),將△CAE繞C逆時(shí)針旋轉(zhuǎn)90°至△CBF,連接EF,且EF的中點(diǎn)為O,連OB、OC,設(shè)AE=x,
(1)求證:OB=OC;
(2)用x表示△BEF的面積S△BEF,并求S△BEF的最大值;
(3)用x表示四邊形BECF的周長C,并求C的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的頂點(diǎn)A為圓心,線段AD長為半徑畫弧,交AB邊于F點(diǎn);再以頂點(diǎn)C為圓心,線段CD長為半徑畫弧,交AB邊于點(diǎn)E,若AD=,CD=2,則DE、DF和EF圍成的陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2020比佛利”無錫馬拉松賽將于3月22日鳴槍開跑,本次比賽設(shè)三個(gè)項(xiàng)目:A.全程馬拉松;B.半程馬拉松;C.迷你馬拉松.小明和小紅都報(bào)名參與該賽事的志愿者服務(wù)工作,若兩人都已被選中,屆時(shí)組委會(huì)隨機(jī)將他們分配到三個(gè)項(xiàng)目組.
(1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為 ;
(2)請(qǐng)利用樹狀圖或列表法求兩人被分配到同一個(gè)項(xiàng)目組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,點(diǎn)E,F分別在BC,CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)B′處,又將△CEF沿EF折疊,使點(diǎn)C落在直線EB′與AD的交點(diǎn)C′處,DF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.若sin∠DFE=,則tan∠EBC的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點(diǎn)的直線,為邊上一點(diǎn),過點(diǎn)作,交直線于,垂足為,連接、
(1)當(dāng)在中點(diǎn)時(shí),四邊形是什么特殊四邊形?說明你的理由;
(2)當(dāng)為中點(diǎn)時(shí),等于 度時(shí),四邊形是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com