用適當?shù)姆椒ń庀铝蟹匠蹋?br />(1)3x(x-1)=1-x
(2)2(x-2)2-98=0
(3)x2-3x-2=0
(4)2y2-4y=2(配方法)
【答案】
分析:(1)首先移項,然后將(1-x)變?yōu)?(x-1),再提取公因式(x-1),利用因式分解法求解即可求得答案;
(2)把(x-2)看做一個整體,然后利用直接開平方法求解即可求得答案;
(3)利用配方法求解即可求得答案;
(4)首先把二次項的系數(shù)化為1,然后配方求解即可.
解答:解:(1)3x(x-1)+(x-1)=0,
(x-1)(3x+1)=0,
x-1=0,3x+1=0,
解得:x
1=1,x
2=-
;
(2)2(x-2)
2=98,
∴(x-2)
2=49,
∴x-2=±7,
∴x
1=9,x
2=-5;
(3)x
2-3x=2,
∴x
2-3x+
=2+
,
∴(x-
)
2=
,
∴x-
=±
,
∴x
1=
,x
2=
;
(4)∵2y
2-4y=2,
∴y
2-2y=1,
∴y
2-2y+1=1+1,
∴(y-1)
2=2,
∴y-1=±
,
∴x
1=1+
,x
2=1-
.
點評:此題考查了一元二次方程的解法.此題難度不大,解題的關(guān)鍵是注意選擇適當?shù)慕忸}方法,首先看能否利用直接開平方法,因式分解法,然后觀察二次項的系數(shù)是否為1,為1則首先選擇配方法,其次才是公式法.