精英家教網 > 初中數學 > 題目詳情
如圖,AB是⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出下列五個結論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正確結論的序號是______.
連接AD,AB是⊙O的直徑,則∠AEB=∠ADB=90°,
∵AB=AC,∠BAC=45°,
∴點O是AB的中點,
∴∠ABE=45°,∠C=∠ABC=
180°-45°
2
=67.5°,
∴AE=BE,∠EBC=90°-67.5°=22.5°,DB=CD,故②正確,
∵∠ABE=45°,∠EBC=22.5°,故①正確,
∴劣弧等于劣弧,又AD平分∠BAC,所以,即劣弧是劣弧的2倍,④正確.
∵∠EBC=22.5°,BE⊥CE,
∴BE≠2EC,
∴AE≠2EC,故③錯誤.
∵∠BEC=90°,
∴BC>BE,
又∵AE=BE,
∴BC>AE
故⑤錯誤.
故答案為:①②④.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AD=2AB,M是AD的中點,CE⊥AB于點E,∠CEM=40°,則∠DME是( 。
A.150°B.140°C.135°D.130°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖所示,在⊙O中,AB是直徑,CD是一條弦,ABCD,圓周角∠CAD=30°,AB=10cm,則弦CD的長是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O半徑為2,直徑CD以O為中心,在⊙O所在平面內轉動,當CD轉動時,OA固定不動,0°≤∠DOA≤90°,且總有BCOA,ABCD,若OA=4,BC與⊙O交于E,連AD,設CE為x,四邊形ABCD的面積為y.
(1)求y關于x的函數解析式,并指出x的取值范圍;
(2)當x=2
3
時,求四邊形ABCD在圓內的面積與四邊形ABCD的面積之比;
(3)當x取何值時,四邊形ABCD為直角梯形?連EF,此時OCEF變成什么圖形?(只需說明結論,不必證明)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,四邊形ABCD內接于⊙O,∠BOD=100°,則∠BCD=______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,設DE=
a
(a>0)
,EM=x.
(1)用含x和a的代數式表示MC的長,并求證:x2-
64-a
•x+12=0

(2)當a=15,且EM>MC時,求sin∠EOM的值;
(3)根據圖形寫出EM的長的取值范圍.試問:在弧DB上是否存在一點E,使EM的長是關于x的方x2-
64-a
•x+12=0
的相等實數根?如果存在,求出sin∠EOM的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,⊙O在△ABC三邊截得的弦長相等,∠A=70°,求∠BOC.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,弦DC、FE的延長線交于圓外一點P,割線PAB經過圓心O,請你結合現(xiàn)有圖形,添加一個適當的條件:______,使∠1=∠2.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,△ABC內接于⊙O,AD是⊙O的直徑,∠ABC=25°,則∠CAD的度數為( 。
A.25°B.50°C.65°D.75°

查看答案和解析>>

同步練習冊答案