【題目】給出三個(gè)多項(xiàng)式:x2+x-1,x2+3x+1,x2+x,請(qǐng)你選擇其中兩個(gè)進(jìn)行加法運(yùn)算,并把結(jié)果因式分解.
【答案】答案見(jiàn)解析.
【解析】
試題因式分解的一般步驟是:1.提公因式;2.公式法(平方差公式的逆用a2- b2=(a+b)(a-b)和完全平方公式的逆用a2±2ab+b2= (a±b)2);3.十字相乘法,如選擇:x2+x-1,x2+3x+1,則:x2+x-1+x2+3x+1=x2+4x
=x(x+4);如選擇:x2-x,x2+x-1,則:x2-x+x2+x-1= x2-1=(x+1)(x-1);如選擇:x2-x ,x2+3x+1,則:x2-x +x2+3x+1= x2+2x+1=(x+1)2.
試題解析:如選擇:x2+x-1,x2+3x+1,則:x2+x-1+x2+3x+1=x2+4x=x(x+4);
如選擇:x2-x,x2+x-1,則:x2-x+x2+x-1= x2-1=(x+1)(x-1);
如選擇:x2-x ,x2+3x+1,則:x2-x +x2+3x+1= x2+2x+1=(x+1)2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF
(2)當(dāng)AD⊥BD時(shí),請(qǐng)你判斷四邊形BFDE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段 的最小覆蓋圓就是以線段 為直徑的圓.
(1)請(qǐng)分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)三角形的最小覆蓋圓有何規(guī)律?請(qǐng)直接寫(xiě)出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū) (其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號(hào)基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號(hào),且使基站所需發(fā)射功率最小(距離越小,所需功率越。,此基站應(yīng)建在何處?請(qǐng)寫(xiě)出你的結(jié)論并說(shuō)明研究思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,AB的垂直平分線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)M,∠A=40°.
(1)求∠NMB的大小.
(2)如果將(1)中的∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的大小.
(3)你認(rèn)為存在什么樣的規(guī)律?試用一句話說(shuō)明.(請(qǐng)同學(xué)們自己畫(huà)圖)
(4)將(1)中的∠A改為鈍角,對(duì)這個(gè)問(wèn)題規(guī)律的認(rèn)識(shí)是否需要加以修改?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長(zhǎng)分別為,,第三邊上的高為.請(qǐng)你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù) 的圖象與x軸交于點(diǎn) A,B,與y軸交于點(diǎn)C.點(diǎn)P是該函數(shù)圖象上的動(dòng)點(diǎn),且位于第一象限,設(shè)點(diǎn)P的橫坐標(biāo)為x.
(1)寫(xiě)出線段AC,BC的長(zhǎng)度:AC= , BC=;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;
(3)過(guò)點(diǎn)P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點(diǎn)K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請(qǐng)求出 的值;若不存在,請(qǐng)說(shuō)明理由,并求出 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70-79分為生產(chǎn)技能良好,60-69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
a.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為_(kāi)_______;
b.可以推斷出________部門員工的生產(chǎn)技能水平較高,理由為_(kāi)_______.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校以“我最喜愛(ài)的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其他項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動(dòng)項(xiàng)目 | 頻數(shù) | 頻率 |
籃球 | 30 | 0.25 |
羽毛球 | m | 0.20 |
乒乓球 | 36 | n |
跳繩 | 18 | 0.15 |
其他 | 12 | 0.10 |
請(qǐng)根據(jù)以上圖表信息,解答下列問(wèn)題:
(1)頻數(shù)分布表中的m=_________,n=_________;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為_(kāi)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AE、AF,線段AE與弧BF交于點(diǎn)G,連接CG,則圖中陰影部分面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com