【題目】為了解某校九年級(jí)學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果如下表,并繪制了如下尚不完整的統(tǒng)計(jì)圖,已知兩組發(fā)言的人數(shù)比為52,請(qǐng)結(jié)合圖表中相關(guān)數(shù)據(jù)回答下列問(wèn)題:

1)本次抽樣的學(xué)生人數(shù)為_________;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該年級(jí)共有學(xué)生500人,請(qǐng)估計(jì)這天全年級(jí)發(fā)言次數(shù)不少于12的人數(shù);

4)已知組發(fā)言的學(xué)生中有1位女生,組發(fā)言的學(xué)生中有2位男生,現(xiàn)從組與組中分別抽一位學(xué)生寫報(bào)告,請(qǐng)用樹(shù)狀圖或列表法,求所抽到的兩位學(xué)生恰好是一男一女的概率.

【答案】150;(2)補(bǔ)全圖形見(jiàn)解析;(390人;(4

【解析】

1)求得B組所占的百分比,然后根據(jù)B組有10人即可求得總?cè)藬?shù),即樣本容量,

2)求得C、F組的人數(shù),從而補(bǔ)全直方圖;

3)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解;

4)分別求出A、E兩組的人數(shù),確定出各組的男女生人數(shù),然后列表或畫樹(shù)狀圖,再根據(jù)概率公式計(jì)算即可得解.

1)∵B、E兩組發(fā)言人數(shù)的比為52,E組發(fā)言人數(shù)占8%

B組發(fā)言的人數(shù)占20%,

由直方圖可知B組人數(shù)為10人,

所以,被抽查的學(xué)生人數(shù)為:10÷20%=50人,

∴本次抽樣的學(xué)生人數(shù)為50人.

2F組人數(shù)為:50×1-6%-20%-30%-26%-8%

=50×1-90%

=50×10%

=5(人),

C組人數(shù)為:50×30%=15(人),

E組人數(shù)為:50×8%=4

補(bǔ)全條形統(tǒng)計(jì)圖如圖:

3)∵發(fā)言次數(shù)不少于12的人數(shù)所占的百分比是

,

(人).

∴這天全年級(jí)發(fā)言次數(shù)不少于12的人數(shù)為90人;

4)∵組發(fā)言的學(xué)生有50×6%=3(人),有1位女生,

組發(fā)言的有2位男生.

組發(fā)言的學(xué)生有(人),有2位男生,

組發(fā)言的有2位女生.

畫樹(shù)狀圖如圖:

由樹(shù)狀圖可知共有12種等可能的結(jié)果,

其中所抽到的兩位學(xué)生恰好是一男一女的結(jié)果有6種,

(恰好是一男一女)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),直線經(jīng)過(guò)點(diǎn)

1)求的值;

2)若點(diǎn)是直線上方拋物線的一部分上的動(dòng)點(diǎn),過(guò)點(diǎn)P軸于點(diǎn)F,交直線AB于點(diǎn)D,求線段的最大值

3)在(2)的條件下,連接,點(diǎn)是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),在拋物線上是否存在點(diǎn),使得以為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EDC邊上(不與點(diǎn)C,點(diǎn)D重合),點(diǎn)GAB的延長(zhǎng)線上,連結(jié)EG,交邊BC于點(diǎn)F,且EGAG,連結(jié)AEAF,設(shè)∠AED,∠GFB

1)求,之間等量關(guān)系;

2)若△ADE≌△ABFAB2,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx1經(jīng)過(guò)A(﹣0.50),B(﹣4,﹣3)兩點(diǎn),交y軸于點(diǎn)C

1)求拋物線的表達(dá)式;

2)若點(diǎn)P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),求使得PA+PC最小時(shí)P點(diǎn)的坐標(biāo);

3)直線BCx軸于點(diǎn)D,連結(jié)AC,若點(diǎn)Py軸上一動(dòng)點(diǎn),且點(diǎn)P不與點(diǎn)C重合,是否存在點(diǎn)P,使得以PB,C為頂點(diǎn)的三角形與△ACD相似?若存在,確定點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DBCB的延長(zhǎng)線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,與軸交于點(diǎn)

1)求該拋物線的解析式;

2)繞點(diǎn)旋轉(zhuǎn)的直線軸相交于點(diǎn),與拋物線相交于點(diǎn),且滿足時(shí),求直線的解析式;

3)點(diǎn)為拋物線上的一點(diǎn),點(diǎn)為拋物線對(duì)稱軸上的一點(diǎn),是否存在以點(diǎn),,為頂點(diǎn)的平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有__________人;

(2)請(qǐng)你將條形統(tǒng)計(jì)圖(1)補(bǔ)充完整;

(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來(lái)自七年級(jí),有來(lái)自九年級(jí),其他同學(xué)均來(lái)自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書法大賽,請(qǐng)通過(guò)列表或畫樹(shù)狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】港口 A、B、C 依次在同一條直線上,甲、乙兩艘船同時(shí)分別從 AB兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時(shí)間 x 時(shí))之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是( )

A.甲船平均速度為 60 海里/時(shí)B.乙船平均速度為 30 海里/時(shí)

C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里

查看答案和解析>>

同步練習(xí)冊(cè)答案