【題目】如圖,在扇形OAB中,半徑OA=4,∠AOB=120°,點(diǎn)C在上,OD⊥AC于點(diǎn)D,OE⊥BC于點(diǎn)E,當(dāng)點(diǎn)C從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段DE長(zhǎng)度的變化情況是( )
A.先變小,后變大
B.先變大,后變小
C.DE與OD的長(zhǎng)度保持相等
D.固定不變
【答案】D
【解析】
試題分析:連接AB,作OF⊥AB于F,由等腰三角形的性質(zhì)得出AF=BF,∠OAF=30°,得出OF=OA=2,由勾股定理求出AF,得出AB長(zhǎng)度,根據(jù)垂徑定理得出D、E分別是BC、AC中點(diǎn),根據(jù)三角形中位線求出即可.
解:連接AB,作OF⊥AB于F,如圖所示:
∵OA=OB,∠AOB=120°,
∴AF=BF,∠OAF=30°,
∴OF=OA=2,
∴AF==2,
∴AB=2AF=4,
∵OD⊥AC于點(diǎn)D,OE⊥BC于點(diǎn)E,
∴點(diǎn)D、E分別是BC和CA的中點(diǎn),
∴DE是△ABC的中位線,
∴DE=AB=2;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A.當(dāng)AB=BC時(shí),它是菱形
B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形
D.當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,直線MN⊥直線PQ,垂足為O,點(diǎn)A在射線OP上,點(diǎn)B在射線OQ上(A、B不與O點(diǎn)重合),點(diǎn)C在射線ON上且OC=2,過點(diǎn)C作直線∥PQ,點(diǎn)D在點(diǎn)C的左邊且CD=3.
(1) 直接寫出△BCD的面積.
(2) 如圖②,若AC⊥BC,作∠CBA的平分線交OC于E,交AC于F,則∠CEF與∠CFE有何數(shù)量關(guān)系?請(qǐng)說明理由.
(3) 如圖③,若∠ADC=∠DAC,點(diǎn)B在射線OQ上運(yùn)動(dòng),∠ACB的平分線交DA的延長(zhǎng)線于點(diǎn)H,在點(diǎn)B運(yùn)動(dòng)過程中的值是否變化?若不變,直接寫出其值;若變化,直接寫出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的是( )
A. 整數(shù) B. 實(shí)數(shù) C. 有理數(shù) D. 無理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)有理數(shù)得乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰算的又快又對(duì),有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對(duì)于以上兩種解法,你認(rèn)為誰的解法較好?
(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫出來;
(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的一邊長(zhǎng)為9,另一邊長(zhǎng)為方程x2﹣8x+15=0的根,則該等腰三角形的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各數(shù)中,可以用來說明命題“任何偶數(shù)都是4的倍數(shù)”是假命題的反例是( )
A. 5 B. 4 C. 8 D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com