精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點,如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請你判斷△OMN的形狀,并證明你的結論.
分析:連OA,由AC=AB,∠BAC=90°,根據等腰直角三角形的性質得OA=OB,OA平分∠BAC,∠B=45°,并且AO⊥BC,則∠NAO=∠B=45°,根據全等三角形的判定得到△NAO≌△MBO,則 ON=OM,∠AON=∠BOM,又∠BOM+∠AOM=90°,得到∠AON+∠AOM=90°,于是可判斷△OMN是等腰直角三角形.
解答:證明:△OMN為等腰直角三角形.理由如下:
連接OA,如圖,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
AN=BM
∠NAO=∠B
AO=BO
,
∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中點,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
點評:本題考查了全等三角形的判定與性質:有兩組邊對應相等,并且它們的夾角也相等的兩三角形全等;全等三角形的對應邊相等、對應角相等.也考查了等腰直角三角形的性質與判定.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案