(2007•荊州)拋物線y=-(x-3)2-5的對稱軸是直線( )
A.x=-3
B.x=3
C.x=5
D.x=-5
【答案】分析:本題函數(shù)式是拋物線的頂點式,可直接求頂點坐標(biāo)及對稱軸.
解答:解:∵拋物線y=-(x-3)2-5是拋物線的頂點式,
根據(jù)頂點式的坐標(biāo)特點,拋物線對稱軸是x=3.
故選B.
點評:考查頂點式y(tǒng)=a(x-h)2+k,頂點坐標(biāo)是(h,k),對稱軸是x=h,要掌握頂點式的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•荊州)如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點B的坐標(biāo)是(,1),點D是AB邊上一個動點(與點A不重合),沿OD將△OAD翻折,點A落在點P處.
(1)若點P在一次函數(shù)y=2x-1的圖象上,求點P的坐標(biāo);
(2)若點P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
(3)當(dāng)線段OD與PC所在直線垂直時,在PC所在直線上作出一點M,使DM+BM最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省漳州市高中自主招生四校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市宣武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•荊州)如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點B的坐標(biāo)是(,1),點D是AB邊上一個動點(與點A不重合),沿OD將△OAD翻折,點A落在點P處.
(1)若點P在一次函數(shù)y=2x-1的圖象上,求點P的坐標(biāo);
(2)若點P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
(3)當(dāng)線段OD與PC所在直線垂直時,在PC所在直線上作出一點M,使DM+BM最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•荊州)拋物線y=-(x-3)2-5的對稱軸是直線( )
A.x=-3
B.x=3
C.x=5
D.x=-5

查看答案和解析>>

同步練習(xí)冊答案