一個(gè)點(diǎn)到一個(gè)圓的最短距離為4cm,最長(zhǎng)距離為8cm,則這個(gè)圓的半徑為
6cm 或2cm
6cm 或2cm
分析:答題時(shí)要考慮該點(diǎn)在圓外和圓內(nèi)兩種情況,然后作答.
解答:解:本題沒(méi)有明確告知點(diǎn)的位置,應(yīng)分點(diǎn)在圓內(nèi)與圓外兩種情況,
當(dāng)點(diǎn)P在⊙O內(nèi)時(shí),此時(shí)PA=4cm,PB=8cm,AB=12cm,因此半徑為6cm;
當(dāng)點(diǎn)P在⊙O外時(shí),如圖此時(shí)PA=4cm,PB=8cm,直線PB過(guò)圓心O,直徑AB=PA=8-4=4cm,因此半徑為2cm.
故答案為:6cm或2cm
點(diǎn)評(píng):本題考查了對(duì)點(diǎn)與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點(diǎn)到圓心的距離為d,則有:當(dāng)d>r時(shí),點(diǎn)在圓外;當(dāng)d=r時(shí),點(diǎn)在圓上,當(dāng)d<r時(shí),點(diǎn)在圓內(nèi).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

唐朝詩(shī)人李欣的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望峰火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題--將軍飲馬問(wèn)題:
如圖1所示,詩(shī)中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營(yíng).請(qǐng)問(wèn)怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長(zhǎng)線上,取B關(guān)于河岸的對(duì)稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為
 

精英家教網(wǎng)
(2)實(shí)踐運(yùn)用
如(3)圖,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動(dòng),求BP+AP的最小值.
精英家教網(wǎng)
(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對(duì)稱軸直線x=1上找到一點(diǎn)M,使△ACM周長(zhǎng)最小,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo)與△ACM周長(zhǎng)最小值.(結(jié)果保留根號(hào))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

唐朝詩(shī)人李欣的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望峰火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題--將軍飲馬問(wèn)題:
如圖1所示,詩(shī)中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營(yíng).請(qǐng)問(wèn)怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長(zhǎng)線上,取B關(guān)于河岸的對(duì)稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為
2
3
2
3

(2)實(shí)踐運(yùn)用
如圖3,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動(dòng),求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對(duì)稱軸直線x=1上找到一點(diǎn)M,使△ACM周長(zhǎng)最小,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo)與△ACM周長(zhǎng)最小值.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

李老師在與同學(xué)進(jìn)行“螞蟻怎樣爬最近”的課題研究時(shí)設(shè)計(jì)了以下三個(gè)問(wèn)題,請(qǐng)你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長(zhǎng).
(1)如圖1,正方體的棱長(zhǎng)為5cm一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C1處;
(2)如圖2,圓錐的母線長(zhǎng)為4cm,底面半徑r=
43
cm,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.
(3)如圖3,是一個(gè)沒(méi)有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對(duì)側(cè)中點(diǎn)B處的食物,已知盒高10cm,底面圓周長(zhǎng)為32cm,A距下底面3cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū) 九年級(jí)數(shù)學(xué) 上 (江蘇版課標(biāo)本) 江蘇版課標(biāo)本 題型:022

圓中的最值問(wèn)題

如圖,點(diǎn)A是半圓上一個(gè)三等分點(diǎn),點(diǎn)B是的中點(diǎn),點(diǎn)P是半徑ON上的動(dòng)點(diǎn).若⊙O的半徑為1,則AP+BP的最小值為_(kāi)_______.

分析:解決此問(wèn)題的數(shù)學(xué)模型是:在直線l的同側(cè)有兩定點(diǎn)A、B,試在直線l上確定一點(diǎn)P,使AP+BP最。@就要用到軸對(duì)稱和“兩點(diǎn)之間,線段最短”的知識(shí)點(diǎn).

作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn),連結(jié),交MN于點(diǎn)P,則此時(shí)AP+BP的值最。

請(qǐng)根據(jù)以上分析求出AP+BP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

唐朝詩(shī)人李欣的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望峰火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題--將軍飲馬問(wèn)題:
如圖1所示,詩(shī)中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營(yíng).請(qǐng)問(wèn)怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長(zhǎng)線上,取B關(guān)于河岸的對(duì)稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為_(kāi)_____.
(2)實(shí)踐運(yùn)用
如圖3,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動(dòng),求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對(duì)稱軸直線x=1上找到一點(diǎn)M,使△ACM周長(zhǎng)最小,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo)與△ACM周長(zhǎng)最小值.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案