如圖,分別以A、B為圓心,線段AB的長為半徑的兩個圓相交于C、D兩點,則∠CAD的度數(shù)為   
120°
連接BC、BD,根據(jù)等邊三角形的性質即可求解.
解:連接BC、BD.

根據(jù)題意,得
AC=BC=AB=AD=BD,
∴∠BAC=∠BAD=60°.
∴∠CAD=120°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系xOy中,點Ax軸的正半軸上,點By軸的正半軸上, 以OB為直徑的⊙CAB交于點D, DE與⊙C相切交x軸于點E, 且OA=cm,∠OAB="30°."

(1)求點B的坐標及直線AB的解析式;
(2)過點BBG^EC F, 交x軸于點G, 求BD的長及點F的坐標;
(3)設點P從點A開始沿ABG的方向以4cm/s的速度勻速向點G移動,點Q同時
從點A開始沿AG勻速向點G移動, 當四邊形CBPQ為平行四邊形時, 求點Q的移動
速度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(滿分l2分)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.

(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圓弧形橋拱的跨度AB=12米,拱高CD=4米,
則拱橋的半徑為(  )
A.6.5米B.9米C.13米D.15米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題10分)如圖,⊙O的直徑AB=4,點PAB延長線上的一點,過點P作⊙O的切線,切點為C,連結AC
(1)若∠CPA=30°,求PC的長;
(2)若點PAB的延長線上運動,∠CPA的平分線交AC于點M.你認為∠CMP的大小是否發(fā)生變化?若變化,請說明理由;若不變化,請求出∠CMP的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,中,,⊙O為它的內切圓,切點分別是、、
(I)若,求:的內切圓的半徑;

(II)若的內切圓半徑,的周長為,則的值為        
(III)若,求

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

有一邊長為的正三角形,則它的外接圓的面積為()
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB為的直徑,CD為的弦,,∠BCD=34°,則∠ABD=           
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,的外接圓,已知,則的大小為        

查看答案和解析>>

同步練習冊答案