【題目】2018年2月16日,由著名導(dǎo)演林超賢的電影《紅海行動》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個不透明的袋子中裝有編號1~4的四個球(除編號外都相同),從中隨機摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

(1)請用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結(jié)果;

(2)分別求出小亮和小麗獲勝的概率.

【答案】(1)共有16種等可能的結(jié)果數(shù);(2)小麗獲勝的概率為.

【解析】

(1)利用樹狀圖展示所有16種等可能的等可能的結(jié)果數(shù);

(2)找出次數(shù)字之和大于5的結(jié)果數(shù)和兩次數(shù)字之和小于5的結(jié)果數(shù),然后根據(jù)概率公式計算即可.

(1)畫樹狀圖為:

共有16種等可能的結(jié)果數(shù);

(2)因為兩次數(shù)字之和大于5的結(jié)果數(shù)為6,

所以小亮獲勝的概率=,

因為兩次數(shù)字之和小于5的結(jié)果數(shù)為6,

所以小麗獲勝的概率=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,點是折線上的一個動點(不與、重合).則的面積的最大值是(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點Q從點A開始沿AB邊向點B1cm/s的速度移動,點P從點B開始沿BC邊向點C2cm/s的速度移動.

(1)如果Q、P分別從A、B兩點出發(fā),那么幾秒后,△PBQ的面積等于8cm2?

(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時期數(shù)學(xué)家劉徽編撰的最早一部測量數(shù)學(xué)著作《海島算經(jīng)》中有一題今有望海島,立兩表齊高三丈前后相去千步,令后表與前表參相直.從前表卻行一百二十三步人目著地,取望島峰與表末參合.從后表卻行一百二十七步,人目著地,取望島峰亦與表末參合.問島高幾何?

譯文今要測量海島上一座山峰AH的高度B處和D處樹立標桿BCDE,標桿的高都是3,BD兩處相隔1000步(1=101=6尺),并且AH,CBDE在同一平面內(nèi).從標桿BC后退123步的F處可以看到頂峰A和標桿頂端C在同一直線上;從標桿ED后退127步的G處可以看到頂峰A和標桿頂端E在同一直線上.則山峰AH的高度是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2AEBD相交于點O

1)求證:AECBED;

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是___

【答案】-3.

【解析】

解:x=1是一元二次方程的根,∴12+k×1-3=0,∴k=2,∴x2+2x-3=0,∴(x+3)(x-1)=0,∴x1=-3,x2=1.故答案為:-3.

型】填空
結(jié)束】
19

【題目】如圖ABC,AB=8,AC=6,AD=12,DBC的延長線上,ACD∽△BAD,BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當(dāng)點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海上有一小島,為了測量小島兩端A、B的距離,測量人員設(shè)計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=8.3海里,DE=30海里,且DEEC,cosD=

(1)求小島兩端A、B的距離;

(2)過點C作CFAB交AB的延長線于點F,求sinBCF的值.

查看答案和解析>>

同步練習(xí)冊答案