【題目】如表是一個4×4(4行4列共16個“數(shù)”組成)的奇妙方陣,從這個方陣中選四個“數(shù)”,而且這四個“數(shù)”中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是( 。
30 |
| 2sin60° | 22 |
﹣3 | ﹣2 | ﹣sin45° | 0 |
|﹣5| | 6 | 23 | |
()﹣1 | 4 |
| ()﹣1 |
A. 5 B. 6 C. 7 D. 8
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠將四種型號的空調(diào)銷售額的情況繪制成了圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖.
(1)請補(bǔ)全圖②的條形統(tǒng)計(jì)圖;
(2)為了應(yīng)對激烈的市場競爭,該廠決定降價促銷,四種型號的空調(diào)分別降價,因此該廠宣稱其產(chǎn)品平均降價,你認(rèn)為該廠的說法正確嗎?請通過計(jì)算說明理由;
(3)為進(jìn)一步促銷,該廠決定從這四種型號的空調(diào)中任意選取兩種型號的空調(diào)降價銷售,請用樹狀圖或列表法求出降價空調(diào)中含D型號空調(diào)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC,∠ABC=90°,頂點(diǎn)A在第一象限,B、C在x軸的正半軸上(C在B的右側(cè)),BC=3,AB=4,若雙曲線交邊AB于點(diǎn)E,交邊AC于中點(diǎn)D.
(1)若OB=2,求k;
(2)若AE=, 求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱“馬踏飛燕”,于1969年10月出土于武威市的雷臺漢墓,1983年10月被國家旅游局確定為中國旅游標(biāo)志,在很多旅游城市的廣場上都有“馬踏飛燕”雕塑,某學(xué)習(xí)小組把測量本城市廣場的“馬踏飛燕”雕塑(圖②)最高點(diǎn)離地面的高度作為一次課題活動,同學(xué)們制定了測量方案,并完成了實(shí)地測量,測得結(jié)果如下表:
課題 | 測量“馬踏飛燕”雕塑最高點(diǎn)離地面的高度 | |||
測量示意圖 | 如圖,雕塑的最高點(diǎn)到地面的高度為,在測點(diǎn)用儀器測得點(diǎn)的仰角為,前進(jìn)一段距離到達(dá)測點(diǎn),再用該儀器測得點(diǎn)的仰角為,且點(diǎn),,,,,均在同一豎直平面內(nèi),點(diǎn),,在同一條直線上. | |||
測量數(shù)據(jù) | 的度數(shù) | 的度數(shù) | 的長度 | 儀器()的高度 |
5米 | 米 |
請你根據(jù)上表中的測量數(shù)據(jù),幫助該小組求出“馬踏飛燕”雕塑最高點(diǎn)離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo),將線段繞點(diǎn)按順時針方向旋轉(zhuǎn)45°,再將其長度伸長為的2倍,得到線段;又將線段繞點(diǎn)按順時針方向旋轉(zhuǎn)45°,長度伸長為的2倍,得到線段;如此下去,得到線段、,……,(為正整數(shù)),則點(diǎn)的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計(jì)圖.請根據(jù)下面兩個不完整的統(tǒng)計(jì)圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,過點(diǎn)B的直線與拋物線的另一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,與y軸交于點(diǎn)F,且,△OBE的面積為.
(1)求拋物線的解析式;
(2)設(shè)P為已知拋物線上的任意一點(diǎn),當(dāng)△ACP的面積等于△ACB的面積時,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q(0,m)是y軸上的動點(diǎn),連接AQ、BQ,當(dāng)∠AQB為鈍角時,則m的取值范圍是 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣ax﹣2a(a為常數(shù)且不等于0)與x軸的交點(diǎn)為A,B兩點(diǎn),且A點(diǎn)在B的右側(cè).
(1)當(dāng)拋物線經(jīng)過點(diǎn)(3,8),求a的值;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)若拋物線的頂點(diǎn)為M,且點(diǎn)M到x軸的距離等于AB的3倍,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2017年1月1日起,我國駕駛證考試正式實(shí)施新的駕考培訓(xùn)模式,新規(guī)定C2駕駛證的培訓(xùn)學(xué)時為40學(xué)時,駕校的學(xué)費(fèi)標(biāo)準(zhǔn)分不同時段,普通時段a元/學(xué)時,高峰時段和節(jié)假日時段都為b元/學(xué)時.
(1)小明和小華都在此駕校參加C2駕駛證的培訓(xùn),下表是小明和小華的培訓(xùn)結(jié)算表(培訓(xùn)學(xué)時均為40),請你根據(jù)提供的信息,計(jì)算出a,b的值.
學(xué)員 | 培訓(xùn)時段 | 培訓(xùn)學(xué)時 | 培訓(xùn)總費(fèi)用 |
小明 | 普通時段 | 20 | 6000元 |
高峰時段 | 5 | ||
節(jié)假日時段 | 15 | ||
小華 | 普通時段 | 30 | 5400元 |
高峰時段 | 2 | ||
節(jié)假日時段 | 8 |
(2)小陳報(bào)名參加了C2駕駛證的培訓(xùn),并且計(jì)劃學(xué)夠全部基本學(xué)時,但為了不耽誤工作,普通時段的培訓(xùn)學(xué)時不會超過其他兩個時段總學(xué)時的,若小陳普通時段培訓(xùn)了x學(xué)時,培訓(xùn)總費(fèi)用為y元
①求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
②小陳如何選擇培訓(xùn)時段,才能使得本次培訓(xùn)的總費(fèi)用最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com