【題目】如圖,△ABC中,BC=10,ACAB=4,AD是∠BAC的角平分線,CD⊥AD,則S△BDC的最大值為______.
【答案】10
【解析】
延長(zhǎng)AB,CD交點(diǎn)于E,可證△ADE≌△ADC(ASA),得出AC=AE,DE=CD,則S△BDC=S△BCE,當(dāng)BE⊥BC時(shí),S△BEC最大面積為20,即S△BDC最大面積為10.
如圖:延長(zhǎng)AB,CD交點(diǎn)于E,
∵AD平分∠BAC,
∴∠CAD=∠EAD,
∵CD⊥AD,
∴∠ADC=∠ADE=90°,
在△ADE和△ADC中,
,
∴△ADE≌△ADC(ASA),
∴AC=AE,DE=CD;
∵AC﹣AB=4,
∴AE﹣AB=4,即BE=4;
∵DE=DC,
∴S△BDC=S△BEC,
∴當(dāng)BE⊥BC時(shí),S△BDC面積最大,
即S△BDC最大面積=××10×4=10.
故答案為:10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),點(diǎn)在該函數(shù)的圖象上,點(diǎn)到軸、軸的距離分別為、.設(shè),下列結(jié)論中:
①沒(méi)有最大值;②沒(méi)有最小值;③時(shí),隨的增大而增大;
④滿足的點(diǎn)有四個(gè).其中正確結(jié)論的個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在邊BC上,∠1=∠2,∠C=∠AED,BC=DE
(1)求證:AB=AD
(2)若∠C=70°,求∠BED的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊矩形紙片,,.將紙片折疊,使得邊落在邊上,折痕為,再將沿向右翻折,與的交點(diǎn)為,則的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開(kāi)始沿折線以的速度運(yùn)動(dòng),點(diǎn)從開(kāi)始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,∠ACB=90,D、E 分別在 AC、AB 邊上,把△ADE 沿 DE 翻折得到△FDE,點(diǎn) F 恰好落在 BC 邊上,若△CFD 與△BFE 都是等腰三角形, 則∠BAC 的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,CD是AB邊上的高,若.
(1)求CD的長(zhǎng).
(2)動(dòng)點(diǎn)P在邊AB上從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),速度為1個(gè)單位/秒;動(dòng)點(diǎn)Q在邊AC上從點(diǎn)A出發(fā)向點(diǎn)C運(yùn)動(dòng),速度為v個(gè)單位秒,設(shè)運(yùn)動(dòng)的時(shí)間為,當(dāng)點(diǎn)Q到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).
①若當(dāng)時(shí),,求t的值.
②若在運(yùn)動(dòng)過(guò)程中存在某一時(shí)刻,使成立,求v關(guān)于t的函數(shù)表達(dá)式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo); ;
(2)方程ax2+bx+c=0的兩個(gè)根是 ;
(3)不等式ax2+bx+c<0的解是 ;
(4)y隨x的增大而減小的自變量x的取值范圍是 ;
(5)求出拋物線的解析式及頂點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com