如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以AP為一邊向上作正方形APDE,過點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,正方形和梯形重合部分的面積為Scm2
(1)當(dāng)t=______s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t=______s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.

【答案】分析:(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),此時(shí)AP=BQ=t,且AP+BQ=AB=2,由此列一元一次方程求出t的值;
(2)當(dāng)點(diǎn)D在QF上時(shí),如答圖1所示,此時(shí)AP=BQ=t.由相似三角形比例線段關(guān)系可得PQ=t,從而由關(guān)系式AP+PQ+BQ=AB=2,列一元一次方程求出t的值;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),運(yùn)動(dòng)過程可以劃分為兩個(gè)階段:
①當(dāng)1<t≤時(shí),如答圖3所示,此時(shí)重合部分為梯形PDGQ.先計(jì)算梯形各邊長,然后利用梯形面積公式求出S;
②當(dāng)<t<2時(shí),如答圖4所示,此時(shí)重合部分為一個(gè)多邊形.面積S由關(guān)系式“S=S正方形APDE-S△AQF-S△DMN”求出.
解答:解:(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故填空答案:1.

(2)當(dāng)點(diǎn)D在QF上時(shí),如答圖1所示,此時(shí)AP=BQ=t.
∵QF∥BC,APDE為正方形,∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,則PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,解得:t=
故填空答案:

(3)當(dāng)P、Q重合時(shí),由(1)知,此時(shí)t=1;
當(dāng)D點(diǎn)在BC上時(shí),如答圖2所示,此時(shí)AP=BQ=t,BP=t,求得t=s,進(jìn)一步分析可知此時(shí)點(diǎn)E與點(diǎn)F重合;
當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí),此時(shí)t=2.
因此當(dāng)P點(diǎn)在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),其運(yùn)動(dòng)過程可分析如下:
①當(dāng)1<t≤時(shí),如答圖3所示,此時(shí)重合部分為梯形PDGQ.
此時(shí)AP=BQ=t,∴AQ=2-t,PQ=AP-AQ=2t-2;
易知△ABC∽△AQF,可得AF=2AQ,EF=2EG.
∴EF=AF-AE=2(2-t)-t=4-3t,EG=EF=2-t,
∴DG=DE-EG=t-(2-t)=t-2.
S=S梯形PDGQ=(PQ+DG)•PD,
=[(2t-2)+(t-2)]•t,
=t2-2t;
②當(dāng)<t<2時(shí),如答圖4所示,此時(shí)重合部分為一個(gè)多邊形.
此時(shí)AP=BQ=t,∴AQ=PB=2-t,
易知△ABC∽△AQF∽△PBM∽△DNM,可得AF=2AQ,PM=2PB,DM=2DN,
∴AF=4-2t,PM=4-2t.
又∵DM=DP-PM=t-(4-2t)=3t-4,
∴DN=(3t-4)=t-2,DM=3t-4.
S=S正方形APDE-S△AQF-S△DMN=AP2-AQ•AF-DN•DM
=t2-(2-t)(4-2t)-×(3t-4)×(3t-4)
=-t2+10t-8.
綜上所述,當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),S與t之間的函數(shù)關(guān)系式為:
S=
點(diǎn)評(píng):本題是運(yùn)動(dòng)型綜合題,涉及到動(dòng)點(diǎn)與動(dòng)線問題.第(1)(2)問均涉及動(dòng)點(diǎn)問題,列方程即可求出t的值;第(3)問涉及動(dòng)線問題,是本題難點(diǎn)所在,首先要正確分析動(dòng)線運(yùn)動(dòng)過程,然后再正確計(jì)算其對應(yīng)的面積S.本題難度較大,需要同學(xué)們具備良好的空間想象能力和較強(qiáng)的邏輯推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案