精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,分別以邊BC,CD作等腰△BCF,CDE,使BC=BF,CD=DE,CBF=CDE,連接AF,AE.

(1)求證:△ABF≌△EDA;

(2)延長ABCF相交于G,若AFAE,求證BFBC.

【答案】(1)證明見解析;(2)證明見解析.

【解析】(1)證明AB=DE,FB=AD,ABF=ADE即可解決問題;

(2)只要證明FBAD即可解決問題.

(1)證明:∵四邊形ABCD是平行四邊形,

AB=CD,AD=BC,ABC=ADC,

BC=BF,CD=DE,

BF=AD,AB=DE,

∵∠ADE+ADC+EDC=360°ABF+ABC+CBF=360°EDC=CBF,

∴∠ADE=ABF,

在△ABF與△EDA中,

ABDE,ABF=∠ADE,BF=AD

∴△ABF≌△EDA

(2)證明:延長FBADH.

AEAF,

∴∠EAF=90°

∵△ABF≌△EDA,

∴∠EAD=AFB,

∵∠EAD+FAH=90°,

∴∠FAH+AFB=90°,

∴∠AHF=90°,即FBAD,

ADBC,

FBBC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB5cmBC6cm,點EFG分別從ABC三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,EBF關于直線EF的對稱圖形是EBF.設點EFG運動的時間為t(單位:s).

1)當t等于多少s時,四邊形EBFB為正方形;

2)若以點EB、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;

3)是否存在實數t,使得點B與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的2倍,則這個矩形是給定矩形的加倍矩形.如圖,矩形是矩形加倍矩形.

解決問題:

1)當矩形的長和寬分別為3,2時,它是否存在加倍矩形?若存在,求出加倍矩形的長與寬,若不存在,請說明理由.

2)邊長為的正方形存在加倍正方形嗎?請做出判斷,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠BAC90°,∠ABC45°,點DAB延長線上一點,連接CD,∠AMC90°,AMBC于點N,∠APB90°,APCD于點Q

1)求證:ANCQ;

2)如圖,點EBA的延長線上,且ADBE,連接EN并延長交CD于點F,求證:DQEN

3)在(2)的條件下,當3AE2AB時,請直接寫出ENFN的值為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC,ACB=90°,CDAB,

(1)圖①中共有     對相似三角形,寫出來分別為         (不需證明);

(2)已知AB=10,AC=8,請你求出CD的長;

(3)(2)的情況下,如果以ABx,CDy,D為坐標原點O,建立直角坐標系(如圖②),若點P從點C出發(fā),以每秒1個單位的速度沿線段CB運動,Q從點B出發(fā),以每秒1個單位的速度沿線段BA運動,其中一點最先到達線段的端點時,兩點即刻同時停止運動;設運動時間為t,是否存在點P,使以點B,P,Q為頂點的三角形與ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.

(1)若拋物線的解析式為,設其頂點為M,其對稱軸交AB于點N.

①求點M、N的坐標;

②是否存在點P,使四邊形MNPD為菱形?并說明理由;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個反比例函數在第一象限內的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當點P的圖象上運動時,以下結論:

的值不會發(fā)生變化

PAPB始終相等

④當點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線ABx軸、y軸分別交于點A30)、B,動點P從原點出發(fā),以每秒1個單位長度的速度向點A運動,到達點A立即停止.點C(﹣1,0),以P為直角頂點,PC為直角邊向x軸上方作等腰RtPQC,PQCAOB重疊部分面積為S,點P運動時間為t(秒),S關于t的函數圖象如圖2所示(其中0≤t,t≤3時,函數解析式不同).

1)當t時,S的值為   

2)求直線AB的解析式;

3)求S關于t的解析式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸為直線x=﹣1,圖象過(1,0)點,部分圖象如圖所示,下列判斷中:abc0;b24ac0;9a3b+c0;若點(﹣0.5y1),(﹣2y2)均在拋物線上,則y1y25a2b+c0.其中正確的個數有(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習冊答案