【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點D作DE∥AC,交BC于E點;過E點作EF⊥DE,交AB的延長線于F點.設AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關系的圖象是( )
【答案】A.
【解析】試題分析:根據(jù)平行線的性質可得∠EDC=∠B=60°,根據(jù)三角形內角和定理即可求得∠F=30°,然后證得△EDC是等邊三角形,從而求得ED=DC=2﹣x,再根據(jù)直角三角形的性質求得EF,最后根據(jù)三角形的面積公式求得y與x函數(shù)關系式,根據(jù)函數(shù)關系式即可判定.∵△ABC是等邊三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDC=30°;
∵∠ACB=60°,∠EDC=60°,
∴△EDC是等邊三角形.
∴ED=DC=2﹣x,
∵∠DEF=90°,∠F=30°,
∴EF=ED=(2﹣x).
∴y=EDEF=(2﹣x)(2﹣x),
即y=(x﹣2)2,(x<2),
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點A關于y軸對稱的點的坐標:______
(2)將△ABC繞坐標原點O逆時針旋轉90°.畫出圖形,直接寫出點B的對應點的坐標:___________
(3)請直接寫出以A、B、C為頂點的平行四邊形的第四個頂點D的坐標:____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平行四邊形ABCD中,AE⊥BC,垂足為E,CE=CD,F(xiàn)為CE的中點,G為CD上的一點,連接DF、EG、AG,并延長AG、BC交于點H,∠DFC=∠EGC.
(1)若CF=2,AE=3,求BE的長;
(2)求證:點G為CD中點;
(3)求證:∠AGE=2∠CEG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面給出四邊形ABCD中,∠A , ∠B , ∠C , ∠D的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是( )
A.1∶2∶3∶4
B.2∶3∶2∶3
C.2∶2∶3∶3
D.1∶2∶2∶3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:
①OA=OD;②AD⊥EF;③當∠A=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.
其中正確的是( )
A.②③④ B.②④ C.①③④ D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在□ABCD中,點E、F是AD、BC的中點,連接BE、DF.
(1)求證:BE=DF.
(2)若BE平分∠ABC且交邊AD于點E,AB=6cm,BC=10cm,試求線段DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com