如圖,AD、BE是銳角△ABC的高,相交于點O,若BO=AC,BC=7,CD=2,則AO的長為


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:由AD、BE是銳角△ABC的高,可得∠DBA=∠DAC,又BO=AC,∠BDO=∠ADC=90°,故△BDO≌△ADC,可得BD=AD,DO=CD,再由邊的關(guān)系即可求出AO的長.
解答:∵AD、BE是銳角△ABC的高
∴∠DBO=∠DAC
∵BO=AC,∠BDO=∠ADC=90°
∴△BDO≌△ADC
∴BD=AD,DO=CD
∵BD=BC-CD=5
∴AD=5
∴AO=AD-OD=AD-CD=3
故選B.
點評:本題考查了全等三角形的判定和性質(zhì);結(jié)合已知條件發(fā)現(xiàn)并利用△BDO≌△ADC是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD、BE是銳角△ABC的兩條高,則△CDE與△ABC的面積比等于(  )
A、sin2C
B、cos2C
C、tan2C
D、
1
tan2C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,AD、BE是銳角△ABC的高,相交于點O,若BO=AC,BC=7,CD=2,則AO的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AD、BE是銳角三角形的兩條高,S△ABC=18,S△DEC=2,則cosC等于


  1. A.
    3
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AD、BE是銳角△ABC的兩條高,則△CDE與△ABC的面積比等于


  1. A.
    sin2C
  2. B.
    cos2C
  3. C.
    tan2C
  4. D.
    數(shù)學公式

查看答案和解析>>

同步練習冊答案