(2007•吉林)如圖,ABCD是矩形紙片,翻折∠B,∠D,使BC,AD恰好落在AC上.設F,H分別是B,D落在AC上的兩點,E,G分別是折痕CE,AG與AB,CD的交點.
(1)求證:四邊形AECG是平行四邊形;
(2)若AB=4cm,BC=3cm,求線段EF的長.

【答案】分析:(1)根據(jù):兩組對邊分別平行的四邊形是平行四邊形,證明AG∥CE,AE∥CG即可;
(2)解法1:在Rt△AEF中,運用勾股定理可將EF的長求出;
解法2,通過△AEF∽△ACB,可將線段EF的長求出.
解答:(1)證明:在矩形ABCD中,
∵AD∥BC,
∴∠DAC=∠BCA.
由題意,得∠GAH=∠DAC,∠ECF=∠BCA.
∴∠GAH=∠ECF,
∴AG∥CE.
又∵AE∥CG,
∴四邊形AECG是平行四邊形.

(2)解法1:在Rt△ABC中,
∵AB=4,BC=3,
∴AC=5.
∵CF=CB=3,
∴AF=2.
在Rt△AEF中,
設EF=x,則AE=4-x.
根據(jù)勾股定理,得AE2=AF2+EF2,
即(4-x)2=22+x2
解得x=,即線段EF長為cm.
解法2:
∵∠AFE=∠B=90°,∠FAE=∠BAC,
∴△AEF∽△ACB,

,
解得,即線段EF長為cm.
點評:本題考查圖形的折疊變化,關鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,只是位置變化.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2007•吉林)如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,回答下列問題:
(1)拋物線y2的頂點坐標______;
(2)陰影部分的面積S=______;
(3)若再將拋物線y2繞原點O旋轉180°得到拋物線y3,求拋物線y3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省初中畢業(yè)升學模擬試卷(1)(解析版) 題型:解答題

(2007•吉林)如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,回答下列問題:
(1)拋物線y2的頂點坐標______;
(2)陰影部分的面積S=______;
(3)若再將拋物線y2繞原點O旋轉180°得到拋物線y3,求拋物線y3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省初中畢業(yè)升學模擬(解析版) 題型:解答題

(2007•吉林)如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,回答下列問題:
(1)拋物線y2的頂點坐標______;
(2)陰影部分的面積S=______;
(3)若再將拋物線y2繞原點O旋轉180°得到拋物線y3,求拋物線y3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省揚州市儀征市大儀中學九年級(下)第一次月考數(shù)學試卷(解析版) 題型:解答題

(2007•吉林)如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,回答下列問題:
(1)拋物線y2的頂點坐標______;
(2)陰影部分的面積S=______;
(3)若再將拋物線y2繞原點O旋轉180°得到拋物線y3,求拋物線y3的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年吉林省中考數(shù)學試卷(解析版) 題型:解答題

(2007•吉林)如圖,拋物線y1=-x2+2向右平移1個單位得到拋物線y2,回答下列問題:
(1)拋物線y2的頂點坐標______;
(2)陰影部分的面積S=______;
(3)若再將拋物線y2繞原點O旋轉180°得到拋物線y3,求拋物線y3的解析式.

查看答案和解析>>

同步練習冊答案