將下圖中的各圖中的點(diǎn)按照其旁邊的數(shù)字從小到大用線段連接,并說明連出的是什么圖形.

答案:
解析:

圖略,圖形為字母MZ


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

32、觀察并探求下列各問題,寫出你所觀察得到的結(jié)論,并說明理由.
(1)如圖,△ABC中,P為邊BC上一點(diǎn),試觀察比較BP+PC與AB+AC的大小,并說明理由.

(2)將(1)中點(diǎn)P移至△ABC內(nèi),得圖②,試觀察比較△BPC的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(3)將(2)中點(diǎn)P變?yōu)閮蓚(gè)點(diǎn)P1、P2得下圖,試觀察比較四邊形BP1P2C的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(4)將(3)中的點(diǎn)P1、P2移至△ABC外,并使點(diǎn)P1、P2與點(diǎn)A在邊BC的異側(cè),且∠P1BC<∠ABC,∠P2CB<∠ACB,得圖,試觀察比較四邊形BP1P2C的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(5)若將(3)中的四邊形BP1P2C的頂點(diǎn)B、C移至△ABC內(nèi),得四邊形B1P1P2C1,如圖⑤,試觀察比較四邊形B1P1P2C1的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常州)用水平線和豎起線將平面分成若干個(gè)邊長(zhǎng)為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)和為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則S=
1
2
a+b-1(史稱“皮克公式”).
小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對(duì)正三角開形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,下圖是該正三角形格點(diǎn)中的兩個(gè)多邊形:

根據(jù)圖中提供的信息填表:
  格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù) 格點(diǎn)邊多邊形內(nèi)部的格點(diǎn)個(gè)數(shù) 格點(diǎn)多邊形的面積
多邊形1 8 1  
多邊形2 7 3  
一般格點(diǎn)多邊形 a b S
則S與a、b之間的關(guān)系為S=
a+2(b-1)
a+2(b-1)
(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(江蘇常州卷)數(shù)學(xué)(解析版) 題型:解答題

用水平線和豎起線將平面分成若干個(gè)邊長(zhǎng)為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)和為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則(史稱“皮克公式”).

小明認(rèn)真研究了“皮克公式”,并受此啟發(fā)對(duì)正三角開形網(wǎng)格中的類似問題進(jìn)行探究:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,下圖是該正三角形格點(diǎn)

中的兩個(gè)多邊形:

根據(jù)圖中提供的信息填表:

 

格點(diǎn)多邊形各邊上的格點(diǎn)的個(gè)數(shù)

格點(diǎn)邊多邊形內(nèi)部的格點(diǎn)個(gè)數(shù)

格點(diǎn)多邊形的面積

多邊形1

8

1

 

多邊形2

7

3

 

一般格點(diǎn)多邊形

a

b

S

則S與a、b之間的關(guān)系為S=      (用含a、b的代數(shù)式表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

觀察并探求下列各問題,寫出你所觀察得到的結(jié)論,并說明理由.
(1)如圖,△ABC中,P為邊BC上一點(diǎn),試觀察比較BP+PC與AB+AC的大小,并說明理由.

(2)將(1)中點(diǎn)P移至△ABC內(nèi),得圖②,試觀察比較△BPC的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(3)將(2)中點(diǎn)P變?yōu)閮蓚(gè)點(diǎn)P1、P2得下圖,試觀察比較四邊形BP1P2C的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(4)將(3)中的點(diǎn)P1、P2移至△ABC外,并使點(diǎn)P1、P2與點(diǎn)A在邊BC的異側(cè),且∠P1BC<∠ABC,∠P2CB<∠ACB,得圖,試觀察比較四邊形BP1P2C的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

(5)若將(3)中的四邊形BP1P2C的頂點(diǎn)B、C移至△ABC內(nèi),得四邊形B1P1P2C1,如圖⑤,試觀察比較四邊形B1P1P2C1的周長(zhǎng)與△ABC的周長(zhǎng)的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案