【題目】把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由.如圖,點(diǎn)B、D在線段AE上,BC∥EF,AD=BE,BC=EF,試說(shuō)明:∠C=∠F;AC∥DF.

解:∵AD=BE(已知)
∴AD+DB=DB+BE(
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠
又∵BC=EF(已知)
∴△ABC≌△DEF(
∴∠C=∠F,∠A=∠FDE(
∴AC∥DF(

【答案】等式的性質(zhì);E;兩直線平行,同位角相等;SAS;全等三角形的對(duì)應(yīng)角相等;同位角相等,兩直線平行
【解析】解:(1)∵AD=BE(已知)

∴AD+DB=DB+BE( 等式的性質(zhì))

即AB=DE

∵BC∥EF(已知)

∴∠ABC=∠E( 兩直線平行,同位角相等)

又∵BC=EF(已知)

∴△ABC≌△DEF( SAS)

∴∠C=∠F,∠A=∠FDE( 全等三角形的對(duì)應(yīng)角相等);

所以答案是:等式的性質(zhì);E; 兩直線平行,同位角相等;SAS;全等三角形的對(duì)應(yīng)角相等;

∵∠A=∠FDE,

∴AC∥DF( 同位角相等,兩直線平行 ).

所以答案是:同位角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年海南西瓜收成良好,小華家也喜獲豐收,小華家今年種植“黑美人”西瓜5畝,“無(wú)籽”西瓜20畝,共收70000千克,按市場(chǎng)價(jià)“黑美人”每千克2.4元,“無(wú)籽”西瓜每千克4元出售,收入264000元.
(1)小華家今年種植的“黑美人”西瓜和“無(wú)籽”西瓜畝產(chǎn)各多少千克?
(2)如果知道種植1畝“黑美人”西瓜的成本為3000元,1畝“無(wú)籽”西瓜的成本為4000元,小華家今年種植西瓜共賺了多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“皮克定理”是用來(lái)計(jì)算頂點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為,孔明只記得公式中的S表示多邊形的面積,a和b中有一個(gè)表示多邊形邊上(含頂點(diǎn))的整點(diǎn)個(gè)數(shù),另一個(gè)表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),請(qǐng)你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù)的字母是 ,并運(yùn)用這個(gè)公式求得圖2中多邊形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( 。

A. 過(guò)點(diǎn)P畫(huà)線段AB的垂線

B. P是直線外一點(diǎn),Q是直線上一點(diǎn),連接PQ,PQ⊥AB

C. 過(guò)一點(diǎn)有且只有一條直線平行于已知直線

D. 線段AB就是表示A,B兩點(diǎn)間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次課外活動(dòng)中,小東用小刀將一個(gè)泥塑正方體一刀切下去,請(qǐng)你猜猜看他切下的多面體可能是哪些柱體或錐體?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=8cm,AC=6cm,在射線BC上一動(dòng)點(diǎn)D,從點(diǎn)B出發(fā),以2厘米每秒的速度勻速運(yùn)動(dòng),若點(diǎn)D運(yùn)動(dòng)t秒時(shí),以A、D、B為頂點(diǎn)的三角形恰為等腰三角形,則所用時(shí)間t為秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C6,若點(diǎn)P(11,m)在第6段拋物線C6上,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2﹣x﹣5=0,求代數(shù)式(x+1)2﹣x(2x+1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種“二十四點(diǎn)”的游戲,其游戲規(guī)則是這樣的:任取四個(gè)1至13之間的自然數(shù),將這四個(gè)數(shù)(每個(gè)數(shù)用且只能用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24.例如對(duì)1,2,3,4,可作如下運(yùn)算:(1+2+3)×4=24(上述運(yùn)算與4×(1+2+3)視為相同方法的運(yùn)算)現(xiàn)有四個(gè)有理數(shù)3,4, ,10,運(yùn)用上述規(guī)則寫(xiě)出三種不同方法的運(yùn)算式,可以使用括號(hào),使其結(jié)果等于24.運(yùn)算式分別為:
(1)
(2);
(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案