(2004•朝陽區(qū))在△ABC中,∠C=90°,cosA=,那么cotA等于( )
A.
B.
C.
D.
【答案】分析:根據(jù)銳角三角函數(shù)的概念,可以證明同角三角函數(shù)關系常用的是:sin2x+cos2x=1;tanx•cotx=1;=tanA;=cotA.
解答:解:∵在△ABC中,∠C=90°,cosA=,
∴sinA==
∴cotA===
故選C.
點評:解答此題要用到同角三角函數(shù)關系式,進行熟練計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•朝陽區(qū))已知拋物線y=ax2+(+3a)x+4與x軸交于A、B兩點,與y軸交于點C.是否存在實數(shù)a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年北京市朝陽區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2004•朝陽區(qū))已知拋物線y=ax2+(+3a)x+4與x軸交于A、B兩點,與y軸交于點C.是否存在實數(shù)a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年陜西省寶雞市渭濱區(qū)九年級質量檢測試卷(解析版) 題型:選擇題

(2004•朝陽區(qū))兩圓的半徑分別為3和4,圓心距為6,這兩個圓的位置關系是( )
A.相交
B.相離
C.外切
D.內切

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的旋轉》(01)(解析版) 題型:選擇題

(2004•朝陽區(qū))下列圖形中,是軸對稱圖形但不是中心對稱圖形的是( )
A.等邊三角形
B.平行四邊形
C.矩形
D.圓

查看答案和解析>>

科目:初中數(shù)學 來源:2004年北京市朝陽區(qū)中考數(shù)學試卷(解析版) 題型:選擇題

(2004•朝陽區(qū))化簡a3•a2的結果是( )
A.a
B.a5
C.a6
D.a9

查看答案和解析>>

同步練習冊答案