在△ABC中,AD是△ABC的角平分線.
(1)如圖1,過C作CE∥AD交BA延長線于點E,若F為CE的中點,連接AF,求證:AF⊥AD;
(2)如圖2,M為BC的中點,過M作MN∥AD交AC于點N,若AB=4,AC=7,求NC的長.
分析:(1)推出∠3=∠E,推出AC=AE,根據(jù)等腰三角形性質(zhì)得出AF⊥CE,根據(jù)平行線性質(zhì)推出即可;
(2)延長BA與MN延長線于點E,過B作BF∥AC交NM延長線于點F,求出BF=CN,AE=AN,BE=BF.設(shè)CN=x,則BF=x,AE=AN=AC-CN=7-x,BE=AB+AE=4+7-x.得出方程4+7-x=x.求出即可.
解答:(1)證明:∵AD為△ABC的角平分線,
∴∠1=∠2.
∵CE∥AD,
∴∠1=∠E,∠2=∠3.
∴∠E=∠3.
∴AC=AE.
∵F為EC的中點,
∴AF⊥EC,
∵AD∥EC,
∴∠AFE=∠FAD=90°.
∴AF⊥AD.

(2)解:延長BA與MN延長線于點E,過B作BF∥AC交NM延長線于點F,
∴∠3=∠C,∠F=∠4.
∵M為BC的中點
∴BM=CM.
在△BFM和△CNM中,
∠F=∠4
∠3=∠C
BM=CM

∴△BFM≌△CNM(AAS),
∴BF=CN,
∵MN∥AD,
∴∠1=∠E,∠2=∠4=∠5.
∴∠E=∠5=∠F.
∴AE=AN,BE=BF.
設(shè)CN=x,則BF=x,AE=AN=AC-CN=7-x,BE=AB+AE=4+7-x.
∴4+7-x=x.
解得 x=5.5.
∴CN=5.5.
點評:本題考查了全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在△ABC中,AD是高,矩形PQMN的頂點P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是BC上的中線,BC=4,∠ADC=30°,把△ADC沿AD所在直線翻折后點C落在點C′的位置,那么點D到直線BC′的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD是BC邊上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的長.(結(jié)果保留根號)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點D,交AC于點F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE、DF分別是△ABD和△ACD的高線,求證:AD⊥EF.

查看答案和解析>>

同步練習(xí)冊答案