如圖,點(diǎn)D在△ABC的邊AB上,連接CD,下列條件:(1);(2);(3);(4),其中能判定△ACD∽△ABC的共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
C

試題分析:由圖可得△ACD與△ABC有一個(gè)公共角∠A,再結(jié)合相似三角形的判定方法依次分析即可.
(1),(2),(3),均能判定△ACD∽△ABC;
(4),不能判定△ACD∽△ABC;
故選C.
點(diǎn)評(píng):相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見(jiàn)題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在的正方形網(wǎng)格中,△OAB的頂點(diǎn)分別為O(0,0),A(1,2),B(2,-1).

(1)以點(diǎn)O(0,0)為位似中心,按比例尺(OA︰OA’)1:3在位似中心的同側(cè)將△OAB放大為△OA’B’,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A’、B’ .畫(huà)出△OA’B’,并寫(xiě)出點(diǎn)A’、B’的坐標(biāo):A’(       ),B’(           );
(2)在(1)中,若為線段上任一點(diǎn),寫(xiě)出變化后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)(        ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常需要總結(jié)運(yùn)用數(shù)學(xué)思想方法。如類比、轉(zhuǎn)化、從特殊到一般等思想方法,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整。
題目:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F在線段AE上,BF的延長(zhǎng)線交射線CD于點(diǎn)G,若,求的值。

(1)嘗試探究
在圖1中,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則易求的值是       ,的值是
         ,從而確定的值是          。
(2)類比延伸
如圖2,在原題的條件下,若,則的值是         。(用含m的代數(shù)式表示),寫(xiě)出解答過(guò)程。
(3)拓展遷移
如圖3,在梯形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線上的一點(diǎn),AE和BD相交于F,若,a>0,b>0),則的值是         。(用含a、b的代數(shù)式表示)寫(xiě)出解答過(guò)程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一張矩形報(bào)紙ABCD的長(zhǎng)為AB="acm" ,寬BC="bcm" ,E、F 分別為AB、CD的中點(diǎn),若矩形AEFD與矩形ABCD相似,則a : b等于(     )
A.            B.          C.             D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖①,在中,,,,點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),速度為2cm/s;連接.若設(shè)運(yùn)動(dòng)的時(shí)間為),解答下列問(wèn)題:

(1)當(dāng)為何值時(shí),?
(2)設(shè)的面積為),求之間的函數(shù)關(guān)系式;
(3)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時(shí)刻,使四邊形為菱形?若存在,求出此時(shí)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是正方形, 點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.

(1) 求證:DE-BF = EF.
(2) 當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí), 試探究線段EF與GF之間的數(shù)量關(guān)系, 并說(shuō)明理由.
(3) 若點(diǎn)G為CB延長(zhǎng)線上一點(diǎn),其余條件不變.請(qǐng)畫(huà)出圖形,寫(xiě)出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在Rt△ABC中,∠BAC=90°,AD⊥BC于D,AB=1,AC=2,則BD=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動(dòng)點(diǎn),連結(jié)OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.

(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng);
(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);
(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),C F的延長(zhǎng)線交AB于點(diǎn)G,則AG∶GD的值為_(kāi)_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案