(2005•泰州)圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

【答案】分析:(1)BE=AD,可通過證三角形BEC和ACD全等來得出.
(2)由于重合部分的面積無法直接求出,因此可用△RPQ的面積減去△RST的面積來求得(S、T為RP、RQ與AC的交點).△PRQ的面積易求得.關鍵是△RST的面積,三角形RST中,由于∠RTS=∠CTQ=60°-∠TCQ=30°,而∠R=60°,因此△RST是直角三角形,只需求出RS和ST的長即可.上面已經(jīng)求得了∠QTC=∠QCT=30°,因此RT=RQ-QT=RQ-QC=3-x,然后根據(jù)△RTS中特殊角的度數(shù)即可得出RS和ST的長,進而可得出y,x的函數(shù)關系式.
(3)本題可通過證△CE′M和△NCC′相似來求解.
解答:解:(1)BE=AD
證明:∵△ABC與△DCE是等邊三角形
∴∠ACB=∠DCE=60°,CA=CB,CE=CD
∴∠BCE=∠ACD
∴△BCE≌△ACD
∴BE=AD.

(2)如圖在△CQT中
∵∠TCQ=30°∠RQP=60°
∴∠QTC=30°
∴∠QTC=∠TCQ
∴QT=QC=x
∴RT=3-x
∵∠RTS+∠R=90°
∴∠RST=90°
∴y=×32-(3-x)2=-(3-x)2+(0≤x≤3).

(3)答:C′N•E′M的值不變,理由為:
證明:∵∠ACB=60°
∴∠MCE′+∠NCC′=120°
∵∠CNC′+∠NCC′=120°
∴∠MCE′=∠CNC′
∵∠E′=∠C′
∴△E′MC∽△C′CN

∴C′N•E′M=C′C•E′C=×=
點評:本題考查了圖形的旋轉(zhuǎn)和平移變換、等邊三角形的性質(zhì)、相似三角形的判定和性質(zhì)以及二次函數(shù)的應用等知識點,綜合性強,難度較高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年中考復習專項訓練《實驗與操作》(解析版) 題型:解答題

(2005•泰州)圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考復習針對性訓練 幾何探究題(解析版) 題型:解答題

(2005•泰州)圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省武漢市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2005•泰州)圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省泰州市中考數(shù)學試卷(解析版) 題型:解答題

(2005•泰州)圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

同步練習冊答案