【題目】已知:四邊形ACDE為平行四邊形,延長EA至點B,使EABA,連接BDAC于點F,連接BC

1)求證:ADBC

2)若BDDE,當∠E   °時,四邊形ABCD為正方形請說明理由.

【答案】(1)詳見解析;(2)當∠E45°時,四邊形ABCD為正方形

【解析】

1)根據(jù)平行四邊形的性質(zhì)得到AECD,AE=CD,推出ABCD,AB=CD,得到四邊形ABCD是平行四邊形,于是得到結(jié)論;

2)根據(jù)平行四邊形的性質(zhì)得到AC=DE,推出AC=DE,得到ABCD是矩形,根據(jù)平行線的性質(zhì)得到ACBD,于是得到四邊形ABCD為正方形.

1)證明:∵四邊形ACDE為平行四邊形,

AECD,AECD,

EABA

ABCD,ABCD

∴四邊形ABCD是平行四邊形,

ADBC;

2)解:當∠E45°時,四邊形ABCD為正方形,

∵四邊形ACDE為平行四邊形,

ACDE

BDDE,

ACDE,

ABCD是矩形,

BDDE,

∴∠E=∠EBD45°,

∴∠BDE90°,

ACDE,

∴∠AFB=∠BDE90°,

ACBD

∴四邊形ABCD為正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=BC=4,點DBC邊的中點,將ABC繞點D逆時針旋轉(zhuǎn)45度,得到A′B′C′,B′C′AB交于點E,則圖中陰影部分四邊形ACDE的面積為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD外有一點P,PBC外側(cè),并在平行線ABCD之間,若PAPB,PC,則PD=( 。

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了更好的開展學校特色體育教育,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學生體育測試成績頻數(shù)分布表

成績

劃記

頻數(shù)

百分比

優(yōu)秀

正正正

a

30%

良好

正正正正正正

30

b

合格

9

15%

不合格

3

5%

合計

60

60

100%

(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:

(1)表中的a=_____,b=_____

(2)請根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖;

(3)如果該校八年級共有150名學生,根據(jù)以上數(shù)據(jù),估計該校八年級學生身體素質(zhì)良好及以上的人數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年甲、乙兩家科技公司共向國家繳納利稅3800萬元.2019年隨著團家減稅降費政策的實施,兩家公司的利稅將會減輕,2019年甲公司的利稅比2018年減少15%,乙公司的利稅比2018年減少20%,預計2019兩家公司的利稅共為3000萬元,求兩家科技公司2018年的利稅各是多少?設(shè)2018年甲公司的利稅為x萬元,乙公司的利稅為y方元,根據(jù)題意列出關(guān)于x,y的方程組為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點BF為圓心,大于的長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)求證:四邊形ABEF是菱形.

2)設(shè)AEBF相交于點O,四邊形ABEF的周長為16,BF4,求AE的長和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知:點A(0,0),B(,0),C(0,1)△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1△AA1B1,第2△B1A2B2,第3△B2A3B3,…,則第個等邊三角形的邊長等于__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線直線AD分別相交于點B,C,圖中三個角三者之間的關(guān)系,下列式子中表述正確的是

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:

1)該公司有哪幾種生產(chǎn)方案?

2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?

3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)

查看答案和解析>>

同步練習冊答案