【題目】如圖,四邊形是矩形

(1)如圖1分別是上的點,,垂足為,連接

求證:;

的中點,求證:;

(2)如圖2,將矩形沿折疊,點落在點處,點落在邊的點處,連接于點,的中點.,,直接寫出的最小值為

【答案】(1) ①見解析;見解析;(2)

【解析】

1證明△FBC∽△ECD可得結(jié)論.

想辦法證明∠AEB=∠AGB,可得sinAGBsinAEB

2)如圖2中,取AB的中點T,連接PT,CP.因為四邊形MNSR與四邊形MNBA關(guān)于MN對稱,TAB中點,QSR中點,所以PTPQ,MN垂直平分線段BS,推出BPPS,由∠BCS90°,推出PCPSPB,推出PQ+PSPT+PC,當(dāng)T,PC共線時,PQ+PS的值最。

1證明:如圖1中,

∵四邊形ABCD是矩形,

∴∠CDE=∥BCF90°,

BFCE

∴∠BGC90°,

∴∠BCG+FBC=∠BCG+ECD90°,

∴∠FBC=∠ECD,

∴△FBC∽△ECD,

證明:如圖1中,連接BE,GD

BFCE,EGCG

BF垂直平分線段EC

BECB,∠EBG=∠CBG

DGCG,

∴∠CDG=∠GCD,

∵∠ADG+CDG90°,∠BCG+ECD90°,

∴∠ADG=∠BCG,

ADBC,

∴△ADG≌△BCGSAS),

∴∠DAG=∠CBG

∴∠DAG=∠EBG,

∴∠AEB=∠AGB,

sinAGBsinAEB

2)如圖2中,取AB的中點T,連接PTCP

∵四邊形MNSR與四邊形MNBA關(guān)于MN對稱,TAB中點,QSR中點,

PTPQ,MN垂直平分線段BS

BPPS,

∵∠BCS90°,

PCPSPB,

PQ+PSPT+PC,

當(dāng)TP,C共線時,PQ+PS的值最小,最小值=,

PQ+PS的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一款雷達式懶人椅.當(dāng)懶人椅完全展開時,其側(cè)面示意圖如圖2所示,金屬桿AB、CD在點O處連接,且分別與金屬桿EF在點B,D處連接.金屬桿CDOD部分可以伸縮(即OD的長度可變).已知OA50cmOB20cm,OC30cmDEBF5cm.當(dāng)把懶人椅完全疊合時,金屬桿AB,CD,EF重合在一條直線上(如圖3所示),此時點E和點A重合.

1)如圖2,已知∠BOD6ODB,∠OBF140°

①求∠AOC的度數(shù).

②求點AC之間的距離.

2)如圖3,當(dāng)懶人椅完全疊合時,求CFCD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y= x2+bx+cx軸負半軸交于A點,與x軸正半軸交于B點,與y軸正半軸交于C點,COBOAB=14

1)求拋物線的解析式;

2)如圖2, MN在第一象限內(nèi)拋物線上,MN點下方,連CMCN,∠OCN+OCM180°, 設(shè)M點橫坐標(biāo)為m,N點橫坐標(biāo)為n,求mn的函數(shù)關(guān)系式(n是自變量)

3)如圖3, (2)條件下,連ANCOE,過MMFABF,連BMEF,若∠AFE2FMB=2β, N點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究請補充完整以下探索過程:

1)列表:

x

-5

-4

-3

-2

-1

0

1

2

3

4

y

m

0

-3

-4

-3

0

-3

-4

n

0

直接寫出________,________;

2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):

性質(zhì)1______________________________________________________

性質(zhì)2_______________________________________________________

3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)60°得到△ADE,連接CD.,則的大小是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線yx與雙曲線yk0)的一個交點為P,n).將直線向上平移b00)個單位長度后,與x軸,y軸分別交于點A,點B,與雙曲線的一個交點為Q.若AQ3AB,則b____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點A、點B在⊙O上,∠AOB90°,OA6,點COA上,且OC2AC,點DOB的中點,點M是劣弧AB上的動點,則CM+2DM的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B4,0)兩點,與y軸交于點C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標(biāo);

3)在(2)的條件下,點Qx軸上的一個動點,點N是坐標(biāo)平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、DQ、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

類別

重視

一般

不重視

人數(shù)

a

15

b

1)求表格中a,b的值;

2)請補全統(tǒng)計圖;

3)若某校共有初中生2000名,請估計該校重視課外閱讀名著的初中生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案