【題目】如圖,ABCD 中,點O 是對角線AC 的中點,EF 過點O,與AD,BC 分別相交于點E,F(xiàn),GH 過點O,與AB,CD 分別相交于點G,H,連接EG,F(xiàn)G,F(xiàn)H,EH.求證:四邊形EGFH 是平行四邊形.
【答案】證明見解析.
【解析】試題分析: 由四邊形ABCD是平行四邊形,得到AD∥BC,根據(jù)平行四邊形的性質(zhì)得到∠EAO=∠FCO,證出△OAE≌△OCF,得到OE=OF,同理OG=OH,根據(jù)對角線互相平分的四邊形是平行四邊形得到結(jié)論.
試題解析:
∵四邊形ABCD 為平行四邊形,
∴AD∥BC.
∴∠EAO=∠FCO.
∵O為AC的中點,
∴OA=OC.
在△OAE和△OCF中,
∴△OAE≌△OCF(ASA).
∴OE=OF.
同理可證得OG=OH.
∴四邊形EGFH是平行四邊形.
點睛: 此題主要考查了平行四邊形的性質(zhì)與判定,關(guān)鍵是掌握平行四邊形對角線互相平分,對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于不等式組 下列說法正確的是( 。
A.此不等式組無解
B.此不等式組有7個整數(shù)解
C.此不等式組的負(fù)整數(shù)解是﹣3,﹣2,﹣1
D.此不等式組的解集是﹣ <x≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1和∠2互補,∠C=∠EDF.
(1)判斷DF與EC的關(guān)系為 .
(2)試判斷DE與BC的關(guān)系,并說明理由.
(3)試判斷∠DEC與∠DFC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直徑為200cm的圓柱形油槽內(nèi)裝入一些油以后,截面如圖.若油面的寬AB=160cm,則油的最大深度為( )
A.40cm
B.60cm
C.80cm
D.100cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=∠AFE,EA是∠BEF的平分線,求證:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com