【題目】某店代理某品牌商品的銷售.已知該品牌商品進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關(guān)系如圖所示(實線),付員工的工資每人每天100元,每天還應(yīng)支付其它費用150元.

1)求日銷售y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當(dāng)天的銷售價是多少?

【答案】1;(255

【解析】

1)分情況討論,利用待定系數(shù)法進行求解即可解題,2)根據(jù)收支平衡的含義建立收支之間的等量關(guān)系進行求解是解題關(guān)鍵.

解:(1)當(dāng)40≤x≤58時,設(shè)yx之間的函數(shù)關(guān)系式為ykx+bk≠0),

將(40,60),(5824)代入ykx+b,得:

,解得:,

∴當(dāng)40≤x≤58時,yx之間的函數(shù)關(guān)系式為y2x+140;

當(dāng)理可得,當(dāng)58x≤71時,yx之間的函數(shù)關(guān)系式為y=﹣x+82

綜上所述:yx之間的函數(shù)關(guān)系式為

2)設(shè)當(dāng)天的銷售價為x元時,可出現(xiàn)收支平衡.

當(dāng)40≤x≤58時,依題意,得:

x40)(﹣2x+140)=100×3+150,

解得:x1x255

當(dāng)57x≤71時,依題意,得:

x40)(﹣x+82)=100×3+150,

此方程無解.

答:當(dāng)天的銷售價為55元時,可出現(xiàn)收支平衡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2-16mx+48m(m0)x軸交于A、B兩點(B在點A左側(cè)),與y軸交于點C,點D是拋物線上的一個動點,且位于第四象限,連接ODBD、AC、AD,延長ADy軸于點E.

(1)若△OAC為等腰直角三角形,求m的值.

(2)若對任意m0,CE兩點總關(guān)于原點對稱,求點D的坐標(biāo)(用含m的式子表示).

(3)當(dāng)點D運動到某一位置時,恰好使得∠ODB=OAD,且點D為線段AE的中點,此時對于該拋物線上任意一點P(x0y0)總有n≥4my0212y0-50成立,求實數(shù)n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc中,自變量x與函數(shù)y之間的部分對應(yīng)值如下表:

在該函數(shù)的圖象上有Ax1,y1)和Bx2,y2)兩點,且-1x10,3x24,y1y2的大小關(guān)系正確的是(

A.y1≥y2B.y1y2C.y1≤y2D.y1y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上,

(1)將△AOB向右平移4個單位長度得到△A1O1B1,請畫出△A1O1B1;

(2)以點A為對稱中心,請畫出 AOB關(guān)于點A成中心對稱的 A O2 B2,并寫點B2的坐標(biāo);

(3)以原點O為旋轉(zhuǎn)中心,請畫出把AOB按順時針旋轉(zhuǎn)90°的圖形A2 O B3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“我要上春晚”進入決賽階段,最終將有甲、乙、丙、丁4名選手進行決賽的終極較量,決賽分3期進行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設(shè)每位選手被淘汰的可能性都相等.

1)甲在第1期比賽中被淘汰的概率為     ;

2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,C04),Ax軸上一動點,連接AC,將ACA點順時針旋轉(zhuǎn)90°得到AB,當(dāng)點Ax軸上運動時,OB+BC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點C,與y軸交于點B,拋物線經(jīng)過B、C兩點.

1)求拋物線的解析式;

2)如圖,點E是拋物線上的一動點(不與BC兩點重合),△BEC面積記為S,S取何值時,對應(yīng)的點E有且只有兩個?

3)直線x=2交直線BC于點M,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠BAC30°,將△ABC沿AC翻折得到△ACD,延長ADBC的延長線于點E,則△ABE的面積為( 。

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一房間內(nèi)A、B兩點之間設(shè)有探測報警裝置,小車(不計大。┰诜块g內(nèi)運動,當(dāng)小車從AB之間經(jīng)過時,將觸發(fā)報警.現(xiàn)將AB兩點放置于平面直角坐標(biāo)系xOy中(如圖),已知點AB的坐標(biāo)分別為(0,4),(4,4),小車沿拋物線yax22ax3aa0)運動.若小車在運動過程中只觸發(fā)一次報警裝置,則a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊答案