【題目】如圖,AB是直線y=x+4與坐標軸的交點,直線y=-2x+b過點B,與x軸交于點C

1)求A,BC三點的坐標;

2)點D是折線ABC上一動點.

①當點DAB的中點時,在x軸上找一點E,使ED+EB的和最小,用直尺和圓規(guī)畫出點E的位置(保留作圖痕跡,不要求寫作法和證明),并求E點的坐標.

②是否存在點D,使△ACD為直角三角形,若存在,直接寫出D點的坐標;若不存在,請說明理由

【答案】1A(-4,0) ;B(0,4)C(2,0);(2)①點E的位置見解析,E0);②D點的坐標為(-13)或(,

【解析】

1)先利用一次函數(shù)圖象上點的坐標特點求得點A、B的坐標;然后把B點坐標代入y=2xb求出b的值,確定此函數(shù)解析式,然后再求C點坐標;
2)①根據(jù)軸對稱最短路徑問題畫出點E的位置,由待定系數(shù)法確定直線DB1的解析式為y=3x4,易得點E的坐標;
②分兩種情況:當點DAB上時,當點DBC上時.當點DAB上時,由等腰直角三角形的性質(zhì)求得D點的坐標為(1,3);當點DBC上時,設(shè)ADy軸于點F,證AOFBOC全等,得OF=2,點F的坐標為(0,2),求得直線AD的解析式為,與y=2x4組成方程組,求得交點D的坐標為().

1)在y=x +4中,

x =0,得y=4

y =0,得x=-4

A(-4,0) B(0,4)

B(0,4)代入y=-2x+b,得b =4,

∴直線BC為:y=-2x+4

y=-2x +4中,

y =0,得x=2,

C點的坐標為(2,0);

2)①如圖

∵點DAB的中點

D-2,2

B關(guān)于x軸的對稱點B1的坐標為(0,-4),

設(shè)直線DB1的解析式為

D-2,2),B10,-4)代入,得,

解得k=-3,b=-4,

∴該直線為:y=-3x-4,

y=0,得x=,

E點的坐標為(,0).

②存在,D點的坐標為(-1,3)或(,).

當點DAB上時,

OA=OB=4

∴∠BAC=45°,

∴△ACD是以∠ADC為直角的等腰直角三角形,

∴點D的橫坐標為,

x=-1時,y=x+4=3,

D點的坐標為(-1,3);

當點DBC上時,如圖,設(shè)ADy軸于點F

∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,

∴∠FAO=CBO

又∵AO=BO,∠AOF=BOC,

AOFBOCASA

OF=OC=2,

∴點F的坐標為(0,2),

設(shè)直線AD的解析式為

A-4,0)與F02)代入得,

解得,

,

聯(lián)立,解得:,

D的坐標為().

綜上所述:D點的坐標為(-1,3)或(

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學(xué)是這樣思考的:延長,使,連結(jié).利用全等將邊轉(zhuǎn)化到,在中利用三角形三邊關(guān)系即可求出中線的取值范圍.在這個過程中小聰同學(xué)證三角形全等用到的判定方法是__________;中線的取值范圍是__________.

2)問題解決:如圖2,在中,點的中點,點邊上,點邊上,若.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件

B. 明天下雪的概率為,表示明天有半天都在下雪

C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

D. 了解一批充電寶的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形AOBC的邊長為8,∠AOB=60° D是邊OB動點,點EBC上,且∠DAE=60°

有下列結(jié)論:

①點C的坐標為(12,);②BD=CE;

③四邊形ADBE的面積為定值;

④當DOB的中點時,△DBE的面積最。

其中正確的有_______.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CEDF

1)求證:四邊形CEDF為平行四邊形;

2)若AB6cm,BC10cm,∠B60°,

AE  cm時,四邊形CEDF是矩形;

AE  cm時,四邊形CEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標軸相交于AB兩點,點Px軸正半軸上的一個動點,當△PAB是等腰三角形時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量某建筑物AB的高度,在離該建筑物底部20m的點C處,目測建筑物頂端A處,視線與水平線夾角∠ADE38.5°,目高CD1.6m.求建筑物AB的高度.(結(jié)果精確到1m(參考數(shù)據(jù):sin38.5°=0.623,cos38.5°=0.783,tan38.5°=0.795)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,A1,2),B3,1),C(﹣2,﹣1).

1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1

2)寫出點A1,B1,C1的坐標(直接寫答案).

查看答案和解析>>

同步練習(xí)冊答案