【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k≠0,x>0)的圖象經(jīng)過點(diǎn)A(3,4),直線AC與x軸交于點(diǎn)C(6,0),過點(diǎn)C作x軸的垂線BC交函數(shù)y=(k≠0,x>0)的圖象于點(diǎn)B.
(1)求k的值及點(diǎn)B的坐標(biāo)
(2)在平面內(nèi)存在點(diǎn)D,使得以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,直接寫出符合條件的所有點(diǎn)D的坐標(biāo).
【答案】(1)k的值是12,B點(diǎn)的坐標(biāo)是(6,2);(2)D(3,2)或(3,6)或(9,﹣2).
【解析】
(1)將點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式中即可求出k的值,再利用B,C兩點(diǎn)橫坐標(biāo)相同,代入求出來的解析式中即可得到點(diǎn)B的坐標(biāo).
(2)若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,分當(dāng)AC為對(duì)角線時(shí),AC與BD互相平分;當(dāng)AB為對(duì)角線時(shí),AB與CD互相平分;當(dāng)AD為對(duì)角線時(shí),AD與BC互相平分三種情況,分情況進(jìn)行討論即可.
解:(1)把點(diǎn)A(3,4)代入y=(x>0),得
k=xy=3×4=12,
故該反比例函數(shù)解析式為: .
∵點(diǎn)C(6,0),BC⊥x軸,
∴把x=6代入反比例函數(shù),得
則B(6,2).
綜上所述,k的值是12,B點(diǎn)的坐標(biāo)是(6,2).
(2)∵A(3,4)、B(6,2)、C(6,0),
設(shè)D(m,n)
①當(dāng)AC為對(duì)角線時(shí),AC與BD互相平分,
∴(3+6)=(6+m),(4+0)=(2+n),
∴m=3,n=2,
∴D(3,2).
②當(dāng)AB為對(duì)角線時(shí),AB與CD互相平分,
∴(3+6)=(6+m),(4+2)=(0+n),
∴m=3,n=6
∴D(3,6).
③當(dāng)AD為對(duì)角線時(shí),AD與BC互相平分,
∴(3+m)=(6+6),(4+n)=(2+0),
∴m=9,n=﹣2,
∴D(9,﹣2).
綜上所述,符合條件的點(diǎn)D的坐標(biāo)是:(3,2)或(3,6)或(9,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,給出以下結(jié)論:①;②;③;④,其中結(jié)論正確有( )個(gè).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
現(xiàn)有甲、乙兩種機(jī)器加工零件,甲種機(jī)器比乙種機(jī)器每小時(shí)多加工30個(gè),甲種機(jī)器加工900個(gè)零件所用時(shí)間與乙種機(jī)器加工600個(gè)零件所用時(shí)間相等,求兩種機(jī)器每小時(shí)各加工多少個(gè)零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)和在直線上的射影分別為點(diǎn)和,那么線段叫做線段在直線上的射影.
如圖①,已知平面內(nèi)一點(diǎn)與一直線,如果過點(diǎn)作直線,垂足為,那么垂足叫做點(diǎn)在直線上的射影;如果線段的兩個(gè)端點(diǎn)和在直線上的射影分別為點(diǎn)和,那么線段叫做線段在直線上的射影.
如圖②,、為線段外兩點(diǎn),,,垂足分別為、.
則點(diǎn)在上的射影是________點(diǎn),點(diǎn)在上的射影是________點(diǎn),
線段在上的射影是________,線段在上的射影是________;
根據(jù)射影的概念,說明:直角三角形斜邊上的高是兩條直角邊在斜邊上射影的比例中項(xiàng).(要求:畫出圖形,寫出說理過程.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的所有內(nèi)角與它的一個(gè)外角之和是2018°,求這個(gè)外角的度數(shù)和它的邊數(shù).
【答案】38° ; 邊數(shù)13
【解析】試題分析:根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.
試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n為正整數(shù),
可得n=13,
此時(shí)α=38°滿足條件,
答:這個(gè)外角的度數(shù)是38°,它的13邊形.
【點(diǎn)睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
22
【題目】已知, 求 (1) ; (2) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時(shí)當(dāng)發(fā),沿同一條路相向而行,小玲開始跑步,中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)函象如圖所示.
(1)家與圖書館之間的路程為 m,小東從圖書館到家所用的時(shí)間為 .
(2)求小玲步行時(shí)y與x之間的函數(shù)關(guān)系式
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).
(1)證明: AD=BE.(2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖①,求證:AE=BD;
(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖②中四對(duì)全等的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com