如圖,在同一平面內(nèi),有一組平行線l1、l2、l3,相鄰兩條平行線之間的距離均為4,點(diǎn)O在直線l1上,⊙O與直線l3的交點(diǎn)為A、B,AB=12,求⊙O的半徑.

【答案】分析:連接OA,過(guò)點(diǎn)O作OD⊥AB,由垂徑定理可知AD=AB,再根據(jù)相鄰兩條平行線之間的距離均為4可知OD=4,在Rt△AOD中利用勾股定理即可求出OA的長(zhǎng).
解答:解:連接OA,過(guò)點(diǎn)O作OD⊥AB,
∵AB=12,
∴AD=AB=×12=6,
∵相鄰兩條平行線之間的距離均為4,
∴OD=8,
在Rt△AOD中,
∵AD=6,OD=8,
∴OA===10.
答:⊙O的半徑為:10.
點(diǎn)評(píng):本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在同一平面內(nèi),有三條直線a、b、c,且a∥b,如果直線a與c交于點(diǎn)O,那么直線c與b的位置關(guān)系是
相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和ADE擺放在一起,A為公共頂點(diǎn),∠BAC=∠ADE=90°,若△ABC固定不動(dòng),△ADE繞點(diǎn)A旋轉(zhuǎn),AD、AE與邊BC的交點(diǎn)分別為F、G(點(diǎn)G不與點(diǎn)B重合,點(diǎn)F不與點(diǎn)C重合).
(1)圖中共有
 
對(duì)相似三角形.(△ABC∽△DEA外)
(2)請(qǐng)選其中的一對(duì)說(shuō)明理由.
(3)若等腰直角三角形的斜邊長(zhǎng)為2,BF=m,CG=n、求m與n的函數(shù)關(guān)系式,并直接寫出自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,它們的斜邊長(zhǎng)為2,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),設(shè)BE=m,CD=n.
(1)△ABE與△DCA是否相似?請(qǐng)加以說(shuō)明.
(2)求m與n的函數(shù)關(guān)系式,直接寫出自變量n的取值范圍.
(3)當(dāng)BE=CD時(shí),分別求出線段BD、CE、DE的長(zhǎng),并通過(guò)計(jì)算驗(yàn)證BD2+CE2=DE2
(4)在旋轉(zhuǎn)過(guò)程中,(3)中的等量關(guān)系BD2+CE2=DE2是否始終成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

按要求作圖:
如圖,在同一平面內(nèi)有四個(gè)點(diǎn)A、B、C、D.
①畫射線CD;②畫直線AD;③連結(jié)AB;④直線BD與直線AC相交于點(diǎn)O.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在同一平面內(nèi)有A、B、C三個(gè)點(diǎn),根據(jù)要求畫圖:
(1)作射線AB,直線AC,連接BC;
(2)過(guò)B作AC的垂線段BD,垂足為D;
(3)延長(zhǎng)線段CB.

查看答案和解析>>

同步練習(xí)冊(cè)答案