【題目】對(duì)角線互相的平行四邊形是菱形.

【答案】垂直
【解析】解:對(duì)角線互相垂直的平行四邊形是菱形, 所以答案是:垂直.
【考點(diǎn)精析】掌握菱形的判定方法是解答本題的根本,需要知道任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知同一平面內(nèi),∠AOB=90゜,∠AOC=60゜.

(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接寫出∠DOE的度數(shù)為;
(3)試問在(2)的條件下,如果將題目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他條件不變,你能求出∠DOE的度數(shù)嗎?若能,請(qǐng)你寫出求解過程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:2x﹣9=5x+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )

A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,三邊長為9、10、x,則x的取值范圍是(

A. 1≤x<19 B. 1<x≤19 C. 1<x<19 D. 1≤x≤19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校買來鋼筆若干枝,可以平均分給(x﹣1)名同學(xué),也可分給(x﹣2)名同學(xué)(x為正整數(shù)).用代數(shù)式表示鋼筆的數(shù)量不可能的是( 。
A.x2+3x+2
B.3x1)(x2
C.x23x+2
D.x33x2+2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤=售價(jià)-制造成本)

(1)寫出每月的利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=-2020x2+2019x有最_____值(填“大”或“小”)

查看答案和解析>>

同步練習(xí)冊(cè)答案